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Abstract. In this paper we investigate a new method of learning part-
based models for visual object recognition, from training data that only
provides information about class membership (and not object location
or configuration). This method learns both a model of local part ap-
pearance and a model of the spatial relations between those parts. In
contrast, other work using such a weakly supervised learning paradigm
has not considered the problem of simultaneously learning appearance
and spatial models. Some of these methods use a “bag” model where
only part appearance is considered whereas other methods learn spatial
models but only given the output of a particular feature detector. Pre-
vious techniques for learning both part appearance and spatial relations
have instead used a highly supervised learning process that provides
substantial information about object part location. We show that our
weakly supervised technique produces better results than these previous
highly supervised methods. Moreover, we investigate the degree to which
both richer spatial models and richer appearance models are helpful in
improving recognition performance. Our results show that while both
spatial and appearance information can be useful, the effect on perfor-
mance depends substantially on the particular object class and on the
difficulty of the test dataset.

1 Introduction

We consider the weakly supervised learning problem for object class recognition,
in which we are given a set of positive exemplars that each contain at least one
instance of a given object class, and a set of negative exemplars that generally
do not contain instances of that class. We use an undirected graphical model
(or Markov random field) representation scheme, where nodes of the graph cor-
respond to local image regions that represent object parts, and edges connect
pairs of nodes whose relative locations are constrained using a Gaussian model.
This type of graphical model has recently been used for object class recogni-
tion by a number of researchers including [2, 5, 7, 8]. We use graphical structures
that have small maximal clique sizes thus allowing for efficient exact discrete
inference. Such structures include trees, star graphs and low tree-width fans (a
generalized form of star graph with a central clique rather than a single central
node).



We develop a new weakly supervised learning procedure for such models and
demonstrate its performance for star-graph models (used in [7]) and fan models
(used in [2]). Our learning method achieves better detection performance than
these previous techniques on some common datasets. We formulate the learning
problem as that of simultaneously estimating models of part appearance and
spatial relationships between parts. This type of combined estimation approach
has been used in previous supervised learning methods, where training data is
labeled with part locations (e.g. [2,5,11]). However previous work on weakly
supervised learning has generally solved a data association problem, where a
feature detector is first run and then detected features are selected in order to
form spatial relational models (e.g., [6-8]). We briefly discuss this related work
in the following section. In contrast, our approach uses an EM procedure that
iteratively improves both the appearance and spatial models. This procedure is
computationally feasible due to the form of the underlying graphical models,
which have small cliques and Gaussian spatial relational terms.

1.1 Related Work

The work presented here most closely relates to two current lines of research,
both of which are concerned with learning probabilistic models of part appear-
ance and spatial relations. The first line of research involves approaches that
simultaneously estimate appearance and spatial parameters from training data
using a maximum likelihood formulation (e.g, [2, 5, 11]). However these methods
all rely on supervised learning procedures for which individual part locations
are marked in the training data. The second line of related research involves
approaches that require only weak supervision, where part locations are not
provided in training (e.g, [6-8,14]). However these methods can be viewed as
learning spatial models given fixed appearance models, because particular fea-
ture detectors are first run to locate interest points. The subsequent learning
process then involves forming a model that provides a consistent association to
these detected features.

A number of other recent object class recognition techniques are also relevant
to our approach, especially work on learning bag models. These models are
collections of features or parts that do not explicitly include spatial information
(e.g., [13,3,12]). Such models can still capture limited spatial information such
as relative sizes of parts, and some fragment-based models encode information
about overlap of parts at different scales [10]. Among these learning techniques
there again is a dichotomy between those that are highly supervised but do not
require feature detection (e.g., [13]) and those that rely on feature detectors
to solve a data association problem (e.g., [3]). Both [10] and [12] are weakly
supervised and do not use feature detectors, making them most similar to the
approach we take here, although they do not explicitly model spatial relations.



2 Form of the Model

We use the undirected graphical model (Markov random field) framework in
[2,5,7] where an object model ©® = (A, S) consists of appearance templates
A = (a1,...,an) for each part, and Gaussian spatial constraints S = {s;;}
defined between certain pairs of parts. One can think of an underlying graph
G = (V,E) with a node v; € V for each part and a corresponding appearance
template a;. A random variable [; specifies the location of each part in some
configuration space, and L = (l,...,l,) denotes the overall configuration of
an object with m parts (i.e., locations for all of the parts). An undirected edge
e;j € IV corresponds to each pair of parts v; and v; for which there is a Gaussian
constraint s;; on the relative locations of those parts. The particular form of
the appearance models a; and the pairwise spatial constraints s;; are described
further below. Examples of some learned models are shown in Figure 2.

We now briefly turn to two important properties of these models. First, the
likelihood of seeing an image given a configuration L of the model factors into a
term for the background and a product over the individual parts of the model.
That is, we assume the appearance of the parts is independent. Second, the prior
probability of a configuration L, for a given model ©, factors into a product of
functions over maximal cliques (recall that a clique is a fully connected subset
of nodes) of the graph,

P(L|©) = [ [ ¥o(Lo), (1)
c

where each C C V is a maximal clique, Lo denotes the location parameters
corresponding to the vertices v; € C, and W¢ is some (non-negative) function of
the location parameters. The utility of this factorization depends on the maximal
cliques being small, as it allows the prior to be factored into a product of terms
that are each over relatively small state spaces Lo rather than the full state
space L. For instance in the case of trees (or star-graphs) the cliques are only
size 2.

Taken together these two properties make it possible to efficiently compute
the exact likelihood of an image x,, for a given model 6, with a discrete set of
possible locations L,

P(z,|0) = > P(z4|0,L)P(L|O). (2)
L

The precise running time is O(mh¢) for a model with m parts, h possible lo-
cations per part, and where ¢ is the size of the largest subset C. For Gaussian
models this time can be reduced to O(mh¢~!) using the approximation methods
in [5].

It is also common to use the maximizing configuration L* to approximate (2)
rather than summing over all values of L. This configuration is the maximum a
posteriori location for a given model and image (the MAP estimate),

arg max P(L|zy,,0) (3)



Using the distance transform techniques introduced in [5] this MAP estimate can
also be computed in O(mhc~1!) time. For clique sizes ¢ < 3 these algorithms are
quite fast in practice, using conservative pruning heuristics that guarantee the
correct answer. While these fast inference procedures have previously been used
for detection and localization, [2,5,7] here we use them as part of an unsuper-
vised learning procedure that simultaneously estimates appearance and spatial
parameters from training data.

2.1 Appearance Model

We use a simple oriented edge appearance template (as in [2]). Let I be the
output of an oriented edge detector, so that at each pixel p, I(p) has a value u
indicating that either no edge is present or that there is an edge at one of a small
fixed number of possible orientations. We model the appearance of the part i by
an appearance template a;. Let f;(p)[u] denote the probability that pixel p € a;
has value u. We assume these probabilities are independent given the location
of the template.

As is common, we assume that the likelihood of an image given a particular
model, as a function of location, is the product of two terms: one for absence
of the model and one for presence of the model. When the model is absent we
simply assume an independent background probability b[u] for each pixel, yield-
ing [, b[/(p)]. When the model is present we assume that the individual part
appearances are independent. Thus for a configuration L where the templates

do not overlap,
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Each term in g; is the ratio of the foreground and background probabilities for
a pixel that is covered by template a;. In equation (4) the denominator of g;
cancels out the background model contribution for pixels that are under a part.

As long as we only consider configurations L without overlapping parts this
likelihood is a true probability distribution over images (i.e., it integrates to one).
When parts overlap it becomes an approximation, since evidence is overcounted
for pixels under multiple templates. In [1] a patchworking operation was used
that averages the probabilities of overlapping templates in computing P(I|©, L)
in order to eliminate overcounting. We follow that approach here. However, to
make computation tractable, we only apply this more accurate method to eval-
uating the likelihood of the best configuration L* and not to the optimization
used to estimate L*.

2.2 Spatial Model

We use the fan models proposed in [2] because they include both bag models
(e.g., [13]) and star-graph models (e.g., [7]) as special cases. A k-fan is a graph



with a central clique of k reference nodes, with the remaining m— k non-reference
nodes connected to all k reference nodes but to none of the other non-reference
nodes. Figure 1 illustrates the structure of 1- and 2-fan models. A 1-fan has a
single reference node, with all other nodes connected to that node but not to
one another. In other words a 1-fan is a star-graph with a single central node,
or equivalently, a tree of depth 1. A 2-fan replaces the single node in the center
with a pair of nodes. These two reference nodes are connected to one another
and to all the non-reference nodes, but there are no edges between non-reference
nodes. When k = m — 1 the fan structure is a complete graph. At the other
extreme, when k = 0 there are no edges, corresponding to a bag model with no
spatial constraints between the parts.

1-fan 2-fan

Fig. 1. Example 1- and 2-fans with reference nodes shown in black.

Let R = {v1,..., v} be the reference parts of a k-fan and Ly = (I1,...,1) be
a particular configuration of these reference parts. Let R be the non-reference
parts, R = V — R. The spatial prior for a k-fan can be written in terms of
conditional distributions as,

P(L|©) = P(Lg|©) [ PO, Lr). (6)
V; EE

In this form it is apparent that the location of each non-reference part is inde-
pendent when conditioned on the root parts.

For small k, this factorization meets our criterion in equation (1) of being a
product over small cliques. This can be seen explicitly in the joint form,

IL..cq (L. Lrl6) -
P(Lal0)"®FD

P(L|O) =

where the denominator can be viewed as a normalization term based on the
choice of reference set R.

For a Gaussian model the marginal distribution of any subset of variables is
itself Gaussian. If pp and X' are the mean and covariance for the locations of the
reference parts then the marginal distribution of the reference parts together with
one non-reference part v; is given by the Gaussian with mean and covariance,

i i Yir
iR = , 2R = . 8
Hir |:MR] A {Em‘ ER:| (8)



These can be used to define the full spatial prior in terms of the above expressions
for P(L|O).

3 Weakly Supervised Learning

Given a set of positive exemplar images, D = (z1,...,2n), each of which con-
tains at least one instance of the object, it is customary to find a model © that
maximizes the likelihood of the data,

N
0" = argm@axp(D|9) = argmax H P(z,]0).

n=1

In searching over possible models, evaluating P(z,|0!) for a particular model
©! and image z, involves summing over the discrete space of possible model
configurations for that image,

P(2,0") = > P(x,|0", L)P(L|O").
L

As we saw in Section 2, this can be solved efficiently because the model factors
according to equations (1) and (4).

Maximum likelihood estimation problems that involve such hidden param-
eters can be solved using an expectation maximization (EM) algorithm, where
a given model ©! is used to estimate values of the hidden variables L, which
are then used to estimate an improved model @1, In the current setting, there
are two important characteristics that make EM particularly simple. First, both
P(x,]|0") and corresponding optimal values of the location variable Lt* can be
computed efficiently. In other settings such computations are often intractable,
and much effort is devoted to finding good approximations that can be computed
efficiently. Second, in our case we do not have a prior for the parameters © of
the model (i.e., we are using a uniform prior over these parameters). In many
applications of EM the prior over the parameters plays an important role in the
optimization.

For a given model ©F, an optimal set of location parameters L* can be esti-
mated for each image x,, either by computing the expected value of the location
parameters or by computing the MAP estimate, as described for equations (2)
and (3) above. For a given model ©! and image x,,, the MAP estimate of location
can be interpreted as the best configuration of the model in the image. On the
other hand the expectation might not correspond to any good configuration, if
for example there are several instances of an object in the image. Given this nat-
ural interpretation of the maximizing configuration, we use the MAP estimate
rather than the expected value for L*.

Given the set D of positive exemplar training images and a candidate model
O©! we estimate the likelihood of the data given the model P(D|6") using the
MAP location parameters L{* for each image x, € D. Using these best lo-
cations, a new maximum likelihood model ©%* can easily be estimated using



the supervised training procedures in [5,2]. To summarize, we have described a
straightforward EM procedure for estimating the model ©* that maximizes the
likelihood of the training data D, given some initial model ©° = (A", S°). We
now discuss how to learn an initial model from weakly supervised training data.

4 Learning an Initial Model

The EM approach to learning object models described in the previous section
requires an initial model ©° = (A°, S%). Since EM is a local search technique, it
is important to start with a reasonable initial model. Our approach is to compute
a large set of candidate appearance templates that seem promising based only
upon how well they individually discriminate between the positive and negative
training data. Then we examine the configurations of those templates in the
positive training data to both choose which candidates to include in the initial
appearance model A® and to define an initial spatial model S°.

4.1 Candidate Patch Models

As in [10,12], our approach is to first generate a large set of potential appearance
template models and then determine how well each such patch predicts the
positive training examples compared to how well it predicts the negative training
examples. Thus in addition to the positive exemplars D used for training the
overall model, we also consider negative exemplars D = (Ty,...,Ty), and we
rank a given template a; by the ratio of the likelihoods of the positive and
negative training data,
P(Dlas)

We use the appearance templates discussed in Section 2.1 that specify the
probability of an edge at each of several orientations at each pixel in the tem-
plate. For the experiments in this paper, four quantized edge orientations were
used: north-south, east-west, northeast-southwest, and northwest-southeast. Our
initial set of candidate templates consists of patches drawn at random from the
positive training images, sampled uniformly from several patch sizes and from all
image locations such that the patches are contained within the image boundaries.
We use three patch sizes: 12 x 12, 24 x 24, and 48 x 48 pixels. For the experiments
reported in this paper we use approximately 100,000 initial patches. The edges
in each patch are dilated in both the spatial and edge orientation dimensions
in order to generalize the initial template from a single training example. We
use a dilation radius of 2.5 pixels in the spatial dimension and 45 degrees in the
orientation dimension.

To improve the quality of the templates, we employ a simple EM procedure,
similar to the one discussed in Section 3 for learning the overall models. This
procedure only maximizes the likelihood of the positive training data P(D]a;)
rather than the ratio in (9), however in practice we observe that this also in-
creases the ratio (and halts the optimization loop if it does not).



More formally, we are interested in maximizing

P(Dla;) = HP (xnlas)

where
P(zpla;) = > Planlai,l) ~ max P(z,a;,1).
1

As above, we use the maximizing location because it specifies the best location of
the template in each image, whereas computing an expected location might not
correspond to any one particular good match. For a given model a! at iteration ¢
we compute the maximizing location lt* for each image x,,. The resultmg set of
locations for the positive exemplars D can then be used to estimate an optimal
template using the supervised learning procedure discussed above. The process
is iterated until the likelihood ratio for the patch stops improving.

This optimization procedure is performed for each initial template. Due to
the redundancy in the selection of the initial patches, there is generally consid-
erable similarity between many of the resulting templates. However we do not
attempt to cluster or otherwise collapse templates at this stage. All the resulting
templates are ranked according to the likelihood ratio in (9). Templates with a
low ratio are poor predictors of the positive exemplars over the negative exem-
plars, so patches with ratios below a threshold (e.g. 1.0) are discarded. All other
templates are retained as candidate parts.

4.2 Pairwise Location of Candidate Patches

The previous step generates a very large set (e.g. tens of thousands) of candidate
patches. It still remains to select some subset of these patches and to build an
initial spatial model. In both selecting among patches and in modeling spatial
relationships we want to take location information into account. For instance, it
could be that a given template appears in both the positive and negative training
examples, but in the positive examples it always appears at a particular location
relative to other templates, making it a potentially predictive part of a model.

The simplest spatial relations are between pairs of patches, so we consider
all pairs of candidate patches and form a Gaussian model of the relative patch
locations s;; = (w45, 2i;) for each pair. This is again a simple supervised learn-
ing procedure because for each template a; and image x, we have previously
estimated the best location [;,,. The mean and covariance of a Gaussian model
of relative pairwise location are readily estimated by considering these locations
for all the positive training images D and a given pair of templates.

Together with the appearance templates these spatial models yield a pairwise
model 6;; = (a;, aj,s:;) for each (unordered) pair of templates. These are just
simple two-node instances of our more general models. For instance the likelihood
of the training data given a model is just

D|97J HZP a:n|a7, i (a:n|aj,lj)P(l7;,lj|s7;j). (10)

n il



This serves as a natural measure of the quality of a pair. As we have before,
we approximate this using the maximizing parameter values [7,[7 rather than
summing over the parameters. In practice, we have found that the estimated
locations for the parts can be noisy. In order to prevent the disproportionate
influence of far outliers, we consider only the 90% of samples that best fit the
spatial model s; ; (i.e., we compute a trimmed mean and covariance).

Some objects have two or more distinct parts that are similar in appearance.
Examples include the two wheels of a bicycle and the two eyes of a human face.
For these objects, the maximizing locations [}, for a given patch a; may corre-
spond to one part in some images and another part in other images. As a result,
the relative displacement between two patches may be a multimodal distribution
to which it makes little sense to fit a Gaussian model. In these cases we have
found it is better to fit a model to the strongest mode and ignore the rest of the
distribution. The underlying idea is that with the high degree of redundancy in
the patches, it is not necessary at this stage to explicitly handle patches that
match at multiple locations. In practice, we handle this case by fitting a mixture
of Gaussian model with a small number of mixture components when a single
Gaussian is not a good a good fit. We then choose the highest-likelihood mixture
component and use the mean and covariance of that component as the model of
the pairwise relative location.

4.3 Initial k-fan model

We use a greedy procedure to construct an initial k-fan model for a given k.
First consider the case of a 1-fan, in which cliques of the model are just the pairs
constructed in the previous section. We exhaustively consider all the candidate
patches identified in Section 4.1 as possible root parts (a 1-fan has just a single
root part). For a given such choice of root part, a,, we consider all other parts
a;, © # r, in order of their quality, ranked by the likelihood of the data given the
pairwise model 6,; in (10). Considering the pairs in this order, if a given part a;
does not overlap any of the other parts thus far in the model, then that part is
added to the model. In practice a small degree of overlap is allowed. This greedy
process continues until there are either no more parts left to add, or until some
pre-determined maximal number of parts is reached. The result of this process
is a set of parts for a potential model with root a,. When repeated for each
possible root part, a large set of candidate 1-fan models is generated.

This process differs only slightly for references sets of size k > 1. We consider
all k-tuples of candidate patches rather than all singletons as possible reference
sets. For each such reference set we as above greedily form a single model, where
for a fixed reference set R all non-reference patches are considered in order, and
added only if they do not overlap patches already in the model. The ordering in
this case is determined according to the product of the pairwise scores in (10) for
all the pairs of a reference patches with the current candidate patch, rather than
just a single such score. Let 0 denote the best model selected in this greedy
fashion for each reference set R.
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Each potential model 0 (one corresponding to each possible choice of ref-
erence node) is scored in order to select one as the best initial model. Ideally
we would like to use the likelihood of the positive exemplars given the model
P(D|0gr). However it is costly to evaluate this for the tens of thousands of can-
didate models. Instead we use a simple approximation: the product of all the
individual part likelihoods and the product of the spatial priors for each con-
nected pair of parts,

II| Il P@alaiti)  TI  PU.Galsa) | (11)

n v EVR (vi,v;)EER

where Vi and ER are the set of nodes and edges of the model 8. Note that in
the case of a 1-fan this quantity is the same as the true likelihood, because all
the cliques are pairs of nodes. For other fan models, however, the true spatial
prior is approximated as a product of pairwise spatial priors.

Finally we choose the model that maximizes (11). While the parts of this
model form the initial appearance templates A°, it is still necessary to create
the initial Gaussian spatial models S° because the greedy model formation pro-
cess considers only pairwise spatial models. This is done using the same simple
supervised learning procedure by which the pairwise models were formed in Sec-
tion 4.2 only now the true cliques of the k-fan model are considered rather than
just pairs. This results in the initial model ©° = (A°, S°) that is then improved
using the EM procedure described previously in Section 3.

5 Experimental Results

In our first set of experiments, we applied our weakly supervised learning method
to the image sets of the Caltech database [6]. Each of these image sets consists
of 800 positive images and 800 negative (background) images, except for the
faces set which contains 435 positive images. The positive and negative datasets
were partitioned so that half of the images were used for training and the other
half were held out for testing. Positive images were scaled so that object size
was approximately uniform across the set of images. In these experiments we
learned models that were limited to six parts, to facilitate comparison with
earlier methods that also used six parts. Table 1 presents the results of these
experiments, and compares the equal-ROC detection accuracy of our method
to other recently reported results. The results are directly comparable because
the image data and experimental protocol are identical across all of these tests.
Figure 2 shows examples of the models that were learned for some of the Caltech
object classes.

These results show that our weakly supervised learning method performs
substantially better than the supervised results presented in [2], in which models
were learned using hand-labeled locations for each part in each image. This is an
encouraging result, as one might expect that carefully hand- labeled data would
yield better performance. The results also show that our unsupervised learning
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0-fan | 1-fan | 2-fan ||Results from literature
Motorbikes|unsupervised [96.7%98.6%|98.6%|| 92.5% [6], 97.3% [7]

supervised [2]] 96.5% | 97.0% | 97.0%
Airplanes |unsupervised [90.3%|94.3%|95.0%|| 90.2% [6], 93.6% [7]
supervised [2]| 90.5% | 91.3% | 93.3%

Faces unsupervised |86.0%|98.0%(98.2%|| 96.4% [6], 90.3% [7]
supervised [2][ 98.2% | 98.2% | 98.2%
Cars unsupervised |88.9%|94.4%94.4%|| 90.3% [6], 87.7% [7]

(rear view)

Table 1. Results of detection experiment on CalTech image set.

method produces better results than previous techniques that use a fixed set
of feature detectors rather than simultaneously learning part appearance and
spatial models [6, 7].

The results in Table 1 show that the detection accuracy for all classes in-
creases substantially between the 0-fan models and the 1-fan models. There was
also some improvement as k increased from 1 to 2 for the airplanes, but little
or no improvement for the other classes. This suggests that for some objects
and image sets, increasing the degree of spatial constraint (i.e. increasing k) in
the object model improves detection performance whereas for other objects and
image sets additional spatial information provides little or no benefit. In part
this is due to the fact that the positive versus negative images in this database
are highly different from one another, making it unnecessary to use spatial rela-
tionships to distinguish positive from negative.

We also tested the detection accuracy of the models learned by our unsuper-
vised algorithm on the non-normalized version of the Caltech imageset, in which
scale is not known. As in [2], we did this by applying the models at several dif-
ferent scales on each image and choosing the scale having the highest-likelihood
detection. The equal-ROC points for the 0-fan and 1-fan models in this setting
were 94.3% and 97.0% for motorbikes, 88.3% and 90.7% for airplanes, 85.7% and
98.0% for faces, and 86.0% and 93.5% for cars, respectively.

We also considered two more challenging datasets. The first of these is the
Graz bicycle image set [9], consisting of 150 images with bicycles and 150 nega-
tive images. Unlike the Caltech data, many of the negative images in this set are
similar to the positive images. The second is a hybrid set using the Caltech mo-
torbike images as the positive images and the Graz bicycle data as the negative
images. This is particularly challenging because many of the local features such
as wheels and handlebars are quite similar between these two classes. As before,
the images were partitioned into separate training and testing sets, and positive
images were rescaled so that the object width was approximately uniform.

Table 2 presents the results of the experiments using the Graz bicycles data,
showing equal-ROC detection results for 0-, 1- and 2-fan models consisting of
6 and of 25 parts. We considered the effect of adding more parts to the model
because approaches that use a bag model generally use large numbers of features



12

or “parts” (e.g., [4,13,3]). The results show that both increasing the number of
parts and increasing the degree of spatial constraint improve the performance.
These results still do not quite achieve the accuracy of bag models on this dataset;
for instance [4] report an equal-ROC rate of 88.0% and [9] report one of 86.5%,
but they come closer than any other spatial models we are aware of.

O-fan | 1-fan | 2-fan
6 parts [79.0%81.0%|81.0%
25 parts|80.0%)|84.0%|84.0%

Table 2. Results of detection experiment on Graz bicycle image set.

Table 3 presents the results of the experiments using the Caltech motorbike
data with the Graz bicycle images as the negative test images. Again this table
shows equal-ROC detection results for 0-, 1- and 2-fan models consisting of 6
and 25 parts. The most pronounced result is that for this data increasing k from
0 to 2 increased the equal-ROC detection results by about 6 percentage points
(i.e., in going from a bag model with no explicit spatial constraints to a model
with a moderate amount of spatial constraint).

O-fan | 1-fan | 2-fan
6 parts [83.3%|88.1%|88.8%
25 parts|84.3%89.3%(90.1%

Table 3. Results of detection experiment on motorbikes, with bicycles as background
images.

The running time of the entire unsupervised learning process is approximately
24 hours on a small cluster of 20 Pentium III nodes. Note that the majority of
this processing time is spent performing the correlations between the training
images and the tens of thousands of candidate part templates. The results of this
part of the process can be cached and reused when learning models for different
values of k. Once the correlation computation has been performed, learning a
new model requires approximately 1 hour on a single Pentium III node. Once
a model has been learned, the average time required to localize an object in an
image is approximately 0.1 seconds for a 0-fan, 0.3 seconds for a 1-fan, and 2.5
seconds for a 2-fan.

6 Summary

We have introduced a weakly supervised method of learning undirected graphical
models for object class recognition. This method simultaneously estimates both
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Fig. 2. Some models produced by our weakly supervised learning technique: (a) 2-fan
motorbike model, (b) 1-fan rear-view car model, and (c) 1-fan face model. Reference
parts are shown with a thick border. The spatial covariance with respect to these
reference parts is illustrated with an ellipse. For simplicity, each template shows only
the overall probability of an edge rather than the probability of each orientation.

part appearance and spatial relations between parts. In contrast, existing weakly
supervised methods for learning these kinds of models rely on feature detectors
rather than learning both appearance and spatial models from the data. Our
method uses previously developed efficient inference and supervised learning
algorithms to develop a simple and effective EM procedure. We have shown that
our method produces better detection results on some standard datasets than
are obtained by state-of-the art methods for learning such spatial models. We
have also shown that for some problems, spatial information seems to be quite
important in achieving high accuracy.

Our results, together with results of some other recent research, raise inter-
esting questions about the role of feature detection in object class recognition.
For bag models, with no explicit spatial information, very good detection perfor-
mance is obtained both using feature detection (e.g., [4]) and by methods that
do not use features (e.g., [13]). On the other hand, for spatial models such as
the one used here, better results seem to be obtained by methods that do not
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use feature detection. Two recent papers have demonstrated improved object
detection results by not using feature detectors [2,7]. In this paper we further
demonstrate that better object detection results can be obtained by also not
using features in the learning process, and instead learning appearance models
together with spatial models. Another interesting set of open questions is raised
by the fact that bag models currently perform better than spatial models for
most common datasets. Our results suggest that this may partly be due to the
datasets, but it remains to better characterize what aspects of bag models versus
spatial models seem to account for these differences.
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