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Abstract

Capsule Networks have been found to be effec-
tive in modeling spatial features with fewer pa-
rameters, and thus to generalize better than CNNs.
However, the routing procedure is designed to
maximize the similarities between adjacent cap-
sules rather than to maximize a global objective
function, and the routing number has to be set
manually. We introduce Generalized CapsNets
(G-CapsNets) to overcome these disadvantages
by incorporating the routing procedure into the
optimization process. G-CapsNets not only ad-
dress the optimization of the coupling coefficients
but also avoid the computational overhead of the
routing procedure. We implement two versions of
G-CapsNets, fully-connected and convolutional,
using Caffe. Experiments show that G-CapsNets
achieve better performance on MNIST and CI-
FARI10 than classic CapsNets, and generalize bet-
ter on GAN-generated synthetic images. We also
test G-CapsNets on robustness to white-box &
black-box adversarial attack.

1. Introduction

Convolutional neural networks (CNNs) (Lecun et al., 1998)
have been found work very well on many computer vision
problems, in part because the initial layers can learn simple
features whereas later layers combine simple features into
complex ones. However, a fundamental issue with CNNs
is that the spatial hierarchies between simple and complex
objects are not well captured, which can prevent CNNs
from generalizing well. For example, to detect a face, a
CNN reports a high confidence if it finds face parts (eyes,
nose, ears, etc.) even if their spatial configuration is not
sensible (since the spatial relationships do not contribute
to the loss). It is still possible for CNNs to capture spatial
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relationships, but they may need deeper networks and many
negative samples.

For the same reason, CNNs do not generalize well across
different angles of the same object (Hinton et al., 2018).
Capsule Networks, on the other hand, are composed of cap-
sules: groups of neurons whose activity vectors represent
the instantiation parameters of a specific type of entity such
as an object or an object part (Sabour et al., 2017). Capsules
help naturally preserve the spatial hierarchies between ob-
ject parts, and thus can achieve similar performance with
fewer parameters. Sabour et al. (2017) demonstrate this on
MNIST (LeCun & Cortes (1998)), CIFAR10 (Krizhevsky
et al.) and smalINORB (LeCun et al. (2004)).

Given these promising properties, many researchers have
explored variants and applications of CapsNets. For exam-
ple, Rawlinson et al. (2018) adapt CapsNets to unsupervised
learning by sparsifying the last capsule layer, while Jaiswal
et al. (2018) treat CapsNets as the backbone for GANs and
achieve lower error rate on both MNIST and CIFAR10. O’
Neill (2018) replace normal neural networks with CapsNets
for face verification, while Duarte et al. (2018) and Liu et al.
(2018) use CapsNets as backbones for video classification
and object localization, respectively.

In spite of many successful applications, the routing proce-
dure of CapsNets is computationally expensive, which limits
their scalability. The issue becomes more serious when a
CapsNet becomes deeper. For example, in Sabour et al.
(2017), the routing number is set as 3 because a smaller or
larger value would cause degradation of performance. For a
10-layer CapsNet, assuming we have to try 3 routing num-
bers for each layer, then 310 combinations must be tested to
find the best routing number assignment. This problem may
significantly limit the scalability and efficiency of CapsNets.

To overcome this issue, in this paper we propose General-
ized CapsNets (G-CapsNets). By “generalized,” we mean
we can train a CapsNet just like training a standard neural
network, and the (local) optimality of the coupling coef-
ficients is guaranteed. The key idea of G-CapsNet is to
incorporate the routing procedure into the overall optimiza-
tion procedure, which makes the coupling coefficients train-
able instead of being calculated by dynamic (Sabour et al.
(2017)) or EM routing (Hinton et al. (2018)). The differ-
ences between CapsNets and G-CapsNet are summarized in
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CapsNets G-CapsNets
Optimization SGD + heuristic SGD
Routing procedure agreement training
Times of Routing meta parameter 1
Coefficients sum 1 any number

Table 1. CapsNets versus G-CapsNets. CapsNets use a routing
procedure called “routing by agreement (dynamic routing, EM
routing);” thus the optimization of CapsNets is a hybrid of Stochas-
tic Gradient Descent (SGD) and this heuristic algorithm, while
G-CapsNets use pure SGD. CapsNets require several iterations
of the routing procedure to find appropriate coupling coefficients
whose sum has to be 1 for each layer, while the coupling coeffi-
cients in G-CapsNets are treated as ordinary parameters and thus
can be any number and only need to be calculated once for each
pass.

Table 1.

We also test the scalability, generalization, and robustness
of G-CapsNets. We find that, compared to vanilla CNNss,
G-CapsNets show better scalability and generalization by
using fewer parameters which is consistent with what Cap-
sNets have claimed. However, we find that G-CapsNets
are as vulnerable as CNNs to white-box adversarial attacks,
which is inconsistent with what the original CapsNets (Hin-
ton et al., 2018) have found. Considering that G-CapsNets
also fall into the slot of CapsNets, so if G-CapsNet is not
robust to adversarial white-box attack, then the claim that
CapsNet is robust to adversarial white-box attack is question-
able. We find similar evidence in (Marchisio et al., 2019;
Yoon, 2017). (Marchisio et al., 2019) develop a method
(the attack belongs to black-box but similar to white-box)
to attack CapsNets successfully while (Yoon, 2017) find
that CapsNets are vulnerable to various attack types (includ-
ing white-box attack). We conjecture that the robustness
of (Hinton et al., 2018) comes from randomness introduced
during the routing procedure rather than the network itself.

2. Related work

Other researchers have found the routing procedure to be
computationally expensive and have tried to improve it.
For example, Wang & Liu (2018) introduce a regularizer
based on KL divergence to minimize the clustering loss
between capsules of adjacent layers. Li et al. (2018) try to
reduce computational cost by adopting two extra branches
to approximate the routing process. Both of these papers
propose an alternative procedure to replace the expensive
“routing by agreement.” However, the approximation of the
routing procedure is restricted to calculating the coupling
coefficients accurately which is not necessarily consistent
with the final objective function. G-CapsNets, on the other
hand, simplify the routing procedure and make it serve the

_______ Capsule Transformation

Figure 1. The structure of G-CapsNets. The capsules in the lower
layers are transformed into intermediate capsules with some target
dimension, then the routing procedure combines these transformed
capsules to form new capsules in the upper layer.

whole objective function directly.

3. Our approach: Generalized CapsNets

Similar to a CapsNet, each capsule layer of a G-CapsNet
has two operations: capsule transformation and capsule rout-
ing. As Figure 1 shows, capsule transformation performs
dimension transformation between adjacent capsule layers,
while capsule routing combines the transformed capsules.

3.1. Capsule transformation & routing

Capsule transformation happens between adjacent capsule
layers, converting one type of capsule u; into another type
of capsule uj); through a matrix operation Wi,

uj‘i = Wijui.

In theory, we can transform any type of capsule into any
other type of capsule. The capsules can be tensors of any
shape as long as we have the appropriate transformation
matrix. For example, in Sabour et al. (2017), 8-d capsules
are transformed into 16-d capsules, while in Hinton et al.
(2018), 4 x 4 capsules are transformed into 4 x 4.

Capsule routing ensures capsules in lower layers are scaled
and sent to their parent capsules in higher layers. From
another point of view, capsule routing can be considered as
a clustering procedure in which the capsules in the upper
layer are centers while the capsules in the lower layer are
points that need to be chosen. Capsule routing combines
information to forge new capsules,

Vj = E C,;jllj‘i.

i
Note that the coupling coefficients c¢;; are not acquired by
the “routing-by-agreement” but depend on the optimization

target. Thus the coupling coefficients could be any value,
depending on the loss term and the regularizer term of the
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whole network. In other words, G-CapsNets choose the
routing coefficients that best fit the loss function, and thus
the sum of the coupling coefficients (3}, ¢;;) does not have
to be 1.

Although the two operations of G-CapsNets are similar to
CapsNets, there is a fundamental difference: the routing
procedure of CapsNets serves as the optimization of sim-
ilarities between capsules while the routing procedure in
G-CapsNets serves as a step for the global optimization
target.

3.2. Activation & loss function

The idea of a squash function in a Capsule Network is to
map the length of a capsule to a number between 0 and 1.

We adopt va = (1 — ﬁ) ﬁ as suggested by Edgar
et al. (2017), rather than the one in Sabour et al. (2017), to
achieve faster convergence. The margin loss function (see

Equation 1) is the same as in (Sabour et al., 2017),

Ly = Ty * max(0, m* — [|vic]|)* 4 A«

(1 — Ty) * max(0, ||vi| —m™ )2

(D

4. Experiments
4.1. G-CapsNets on MNIST & CIFAR10
4.1.1. FULLY CONNECTED G-CAPSNETS ON MNIST

For G-CapsNets, we adopt the same architecture as Sabour
et al. (2017). The first convolutional layer outputs 256 fea-
ture maps. The second convolutional layer outputs 256
feature maps or 32x6x6 8D capsules. For the final layer,
we replace the dynamic routing procedure with our train-
able routing procedure. Please check our released code
or Sabour et al. (2017) for more details. We Iso adopt the
same baseline described in Sabour et al. (2017), with three
convolutional layers of 256, 256, and 128 channels. The
kernels and strides are 5x5 and 1. The last convolutional
layer is followed by two fully-connected layers of size 328
and 192 and a 10-class softmax classifier.

We call the capsule structure here (and the one in Sabour
et al. (2017)) “fully-connected CapsNet” since each capsule
in the higher layer connects to every capsule in the lower
layer. As Table 2 shows, no matter the reconstruction in-
volved, G-CapsNets achieves better performance than CNNs
or CapsNets (Sabour et al., 2017). Note that the accuracy
of the baseline and CapsNets reported here is lower than
in Sabour et al. (2017) due to differences in the data aug-
mentation (pixel-shifting) adopted by Sabour et al. (2017)
as well as different frameworks (Caffe versus TensorFlow).

Algorithm error rate(%) param #
vanilla CNN 0.9149.09/36.544+0.78s 35.4M/9.6M
CapsNets** 1.2440.10/40.881067 8.2M/2.67TM
FC G-CapsNets 0.6740.05/32.7040.47 8.2M/2.67TM
FC G-CapsNets* 0.66-9.03/- 6.8M/-
Conv G-CapsNets 0.8440.09/33.5340.520 6.9M/2.67TM
Conv G-CapsNets* 0.8640.1317/- 5.5M/-
Multi G-CapsNets -134.294¢.33 -/716K

Table 2. Error rate versus number of parameters on MNIST & CI-
FAR10. Note that “*” means no reconstruction, and “CapsNets**”
is the algorithm that comes from (Sabour et al., 2017). Each num-
ber before and after slash is the corresponding error rate of MNIST
and CIFARI10 respectively.

4.1.2. CONVOLUTIONAL G-CAPSNETS ON MNIST

Similar to the structure in Hinton et al. (2018), we build
a convolutional version of G-CapsNets. The same type of
capsules of different positions share the same transformation
matrices. We use a 6x6 kernel for the last capsule layer and
a 4x4 matrix As Table 2 shows, convolutional G-CapsNets
achieve better performance compared to the baseline by
using fewer parameters.

4.1.3. G-CAPSNETS ON CIFAR10

For CIFAR10, we build a similar G-CapsNet structure as the
one used for MNIST, except that: (1) we use 64 feature maps
(rather than 256 feature maps) in the first convolutional layer,
and (2) we use an 8x8 kernel for the capsule layer and trans-
form each capsule with an 8x8 matrix. The baseline shares
the same structure as G-CapsNets for the first two layers,
and has two fully-connected layers with outputs of 512 and
10. As Table 2 shows, both fully-connected CapsNets and
convolutional CapsNets achieve better performance than ei-
ther the baseline or CapsNets. We also develop a multi-layer
version of G-CapsNets which achieves better performance
than either CNNs or CapsNets, as Table 2 shows. Please
refer to the supplementary appendix for more details.

4.2. Generalization and robustness of G-CapsNets

CapsNets are better at capturing the relationship of different
spatial features, so it makes sense to believe that CapsNets
should be more generalizable and robust. To test if this, we
use AC-GANs (Auxiliary Classifier Generative Adversarial
Networks) proposed by (Odena et al., 2017) to generate
synthetic images. Specifically, we generate 4,000 artificial
MNIST-like images (400 images for each digit), as Figure 2
shows. AC-GAN encodes both class labels as well as noise
to generate synthetic images. The discriminator of AC-
GAN also outputs a distribution over the source and the
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Error rate (%)

Epochs Baseline FC G-CapsNets Conv G-CapsNets
1 19.800 23.500 19.725
2 5.600 3.250 4.050
3 0.725 0.000 0.700
4 0.001 0.000 0.000
5 0.003 0.000 0.001

Table 3. Error rate on MNIST-like images generated by AC-
GAN (Odena et al., 2017), for the baseline (35.4M parameters),
fully-connected G-CapsNets (6.8M parameters), and convolu-
taional G-CapsNets (5.5M parameters).

class labels (please refer to the original paper for details).
The discriminator contains four convolutional layers with
32, 64, 128, and 256 feature maps. Each convolutional layer
is followed by a leaky ReLLU layer and a dropout layer. The
generator first uses a fully-connected layer to map the latent
vector (100, 1) to a (3, 3, 384) tensor, then up-samples the
tensor to a (7, 7, 192) tensor, a (14, 14, 96) tensor and a (28,
28, 1) tensor. The learning rate (2e-4) and betal (0.5) are
those recommended by Radford et al. (2015).

These images are generally recognizable for humans but
not the same as the original images in MNIST (in terms of
distribution) since they are generated in the early stage of
AC-GAN. These two properties make these images useful
for testing generalization.

The underlying assumption of CapsNets is that they are
better at capturing the spatial features in an image and thus
need far fewer parameters than standard neural networks. As
Table 3 shows, both the fully connected version and convolu-
tion version of G-CapsNets achieve better performance than
the baseline, which uses more parameters. However, both
the baseline and G-CapsNets show no significant difference
when the number of epochs is larger than 3. We argue this
is because the generated images have already converged to
the same distribution as in MNIST. Note that it makes more
sense to compare the performance over three network struc-
tures rather than across epochs since the generated images
vary each time.

4.3. The robustness of G-CapsNets on black box attack

Hinton et al. (2018) found that CapsNets are comparable
to CNNs regarding robustness to black-box attacks despite
using fewer parameters. Our experiments also support this
claim. Specifically, we adopt LeNet as the substitute model
to generate perturbations for each test image (10K testing im-
ages in MNIST) based on FSGM (Goodfellow et al. (2015)).
We restrict the maximum perturbation of each pixel to be
8 (Lo < 8). We found that the accuracy of the base-
line, the fully-connected G-CapsNets, and the convolutional
G-CapsNets drop sharply to 11.35%, 8.92%, and 11.35%,
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Figure 2. The generated MNIST-like images. From top to bottom,
the number of training epochs is 1, 2, 3, 4 and 5.

respectively, after the attack. This suggests that G-CapsNets
are as vulnerable as standard neural networks.

4.4. The robustness of G-CapsNets on white-box attack

Hinton et al. (2018) found that CapsNets are robust to white-
box adversarial attack due to numerical instability ( Nayebi
& Ganguli (2017)) as well as the smaller percentage of zero
values in the gradient. However, their testing was based
on FGSM (Goodfellow et al., 2015) which is not a strong
attack technique. Inspired by Universal Adversarial Per-
turbations (Moosavi Dezfooli et al., 2017), we trained a
generative model to generate universal perturbations during
training (offline), and then applied the generated perturba-
tions to all testing images. We found that G-CapsNets do
not show stronger robustness to the attack. Please check the
supplementary appendix for more details.

5. Conclusion

G-CapsNets incorporate the capsule routing procedure into
the overall optimization process, avoiding the need to set
routing times for each capsule layer. The two versions of G-
CapsNets, fully-connected G-CapsNets and convolutional
G-CapsNets, achieve better performance on MNIST and CI-
FAR10 compared to both CNNs and CapsNets. G-CapsNets
also show good scalability as well as generalization ability.
Finally, we evaluated the robustness of G-CapsNets against
both the white-box attack and black-box attack, and found
that G-CapsNets are vulnerable to both types of attacks.
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] Layer | Layer parameters | param # |
Conv#l (7,7,64), 1 9.4K
Conv#2 (7,7,128),2 401.4K
Conv Caps Trans#1 4,4,8),1,(8,8) 131.1K
Conv Caps Routing#1 | (3, 3,16), (7,7, 8) 56.4K
Conv Caps Trans#2 (3,3,16),2,(2,2) 4.6K
Conv Caps Routing#2 | (3, 3, 8), (3, 3, 16) 10.4K
FC Caps Trans#1 (16, 3, 3,8),(8,10) | 92.2K
FC Caps Routing#1 (16, 3, 3, 8), 10 11.5K
] Total \ - \ 716K \

Table 1. The structure of Multi-layer G-CapsNets.

6. Supplementary Material

6.1. The structure of Multi-layer G-CapsNets on
CIFAR10

To test the scalability of G-CapsNets, we build a network
with two convolutional layers, two convolutional capsule
layers, and one full connected layer, as Table 1 shows. We
adopt one ReLU layer and one squash layer after each con-
volutional capsule layer and full connected capsule layer.
Take the ‘Conv Caps Transform#1’ as an example, (4, 4, 8)
means the kernel size is (4, 4) and the number of capsule
feature maps is 8. The following number is the stride. The
last (8, 8) refers to the transformation matrix. Namely, the
G-CapsNets transform capsules (1x8) on the lower layer to
capsules (1x8) on the upper layer. ‘Conv Caps Routing#1’
follows the ‘Conv Caps Transform#1’, whose responsibil-
ity is combining the information from each tensor with the
shape of (3, 3, 16), and we have a total number of 7x7x8
combinations. For the full connected CapsNet, take the
‘FC Caps Transform#1’ layer as example, the multi-layer
G-CapsNets transform each tensor with a shape of (16, 3,
3, 8) on the lower layer to a new tensor with a shape of
(16, 3, 3, 8) on the upper layer. Then the layer ‘FC Caps
Routing#1’ combines each tensor of shape (16, 3, 3, 8) to
a new tensor of shape (1, 8). Since CIFAR has ten classes,
the output of the final layer has a shape of (10, 8).

6.2. White adversarial attack on G-CapsNet

The structure of the generative model is similar to a GAN but
with the discriminator unchanged. Specifically, the input of
the generator is a 100-dimension latent vector whose values
are between 0 and 1. The latent vector layer is followed
by three deconvolutional layers (note that we apply Batch
Normalization after each de-convolutional layer). The final
layer of the generative branch outputs a tensor with the
same dimension as the input image. The discriminator is the
classification model we need to test. The loss function is to
minimize the difference between the logits of a clean image
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Figure 1. The decreasing curve of three network structures (stan-
dard: standard neural network, fc: fully-connected G-CapsNets,
conv: convolutional G-CapsNets) with white-box attack

and the logits of its manipulated version. The whole attack
is untargeted, and we assign each under-attacked image a
random incorrect label during training.

We apply this attack technique on the test set of MNIST
which contains 1000 images. As Figure 1 shows, all three
networks’ accuracy drop sharply after 100 attacking itera-
tions. This result is not consistent with what( Hinton et al.
(2018)) found with the weaker FGSM attack. These results
suggest that CapsNets and CNNs are both vulnerable to
strong white-box attacks like UAP.



