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Abstract. Case-based Reasoning (CBR) solves new problems by re-
trieving a stored case for a similar problem and adapting its solution to
fit. Acquiring case adaptation knowledge is a classic problem for CBR. A
popular method for addressing it is the case difference heuristic (CDH)
approach, which learns adaptations from pairs of cases based on their
problem differences and solution differences. The CDH approach has of-
ten been used to generate adaptation rules, but recent CBR research on
case-based regression has investigated replacing learning rules with learn-
ing CDH-based network models for adaptation. This paper presents and
evaluates a neural network based CDH approach for learning adapta-
tion models for classification, C-NN-CDH. It examines three variants,
(1) training a single neural network on problem-solution differences, (2)
segmenting adaptation knowledge by the classes of source cases, with a
separate neural network to generate adaptations for each group, and (3)
adapting from an ensemble of source cases and taking the majority vote.
Experimental results demonstrate improved performance compared to
previous research on statistical methods for computing CDH differences
for classification. Additional results support that C-NN-CDH achieves
classification performance comparable to that of multiple classic classifi-
cation approaches.

Key words: Case Difference Heuristic, Classification, Ensemble Learn-
ing, Neural Network Based Adaptation

1 Introduction

Case-based Reasoning (CBR) solves new problems by retrieving a stored case
with a similar problem and adapting the solution to accommodate the new
problem (e.g., [18]). Case-based reasoning is appealing for properties such as
enabling a natural knowledge capture process for cases in suitable domains (e.g.,
[19]), facilitating knowledge acquisition, and interpretability of cases to justify
solutions [5].

However, obtaining the adaptation knowledge needed to adapt prior solu-
tions is a classic challenge. In response, extensive research has explored the use
of machine learning methods to acquire case adaptation knowledge for both
classification (e.g., [7, 11]) and regression (e.g., [8, 10, 17, 22, 23]). An interesting
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recent direction is the use of neural network methods for CDH learning for regres-
sion adaptations. This paper presents and evaluates a neural network method
for learning the adaptation knowledge needed for classification tasks.

The case difference heuristic (CDH) approach [9] is one of the most used
methods to learn adaptation knowledge. The CDH approach takes pairs of cases
from the case base and from each pair learns a rule to adapt one case to another.
As a simplified example, consider applying CBR to apartment price prediction.
Suppose two apartments A and B are very similar, except that A has carpeted
floor while B has a wooden floor, and that the rent for B is $200 more. By
comparing apartments A and B, a CDH approach might learn the rule that
changing from carpet to wooden floor increases an apartment’s rent by $200. An
issue for CDH approaches is what generalization to learn from the case pairs:
Rather than learning an absolute difference, a CDH approach might learn the
percent change or another characterization of the observed difference.

Recent work by Liao, Liu, and Chao [17] learns adaptations for regression
tasks with a case difference heuristic approach using a neural network to learn
the difference characterization. Their approach trains a network to map problem
differences to differences in output values, avoiding the need to pre-define gen-
eralization strategies. Jalali, Leake, and Forouzandehmehr [11] apply the CDH
approach to classification, using a statistical method to generate case adaptation
rules for classification.

To our knowledge, this study presents the first neural network based case
difference heuristic approach to classification. Our approach, which we refer to as
case-based Classification with Neural Network based CDH (C-NN-CDH), uses
neural networks to learn adaptation knowledge from pairs of cases. Experimental
results on multiple data sets show that the C-NN-CDH approach outperforms the
statistical approach of [11], the previous state of the art for statistical adaptation
for classification.

This study investigates five variants of the C-NN-CDH approach. Some vari-
ants segment the pairs of cases based on their classes and train a separate model
per segment. The segmented variants offer faster training but slightly lower ac-
curacy. We also tested variants using an ensemble of adaptations; These provide
roughly comparable performance to their non-ensemble counterpart. A variant
taking a majority vote of one adaptation from each class provides additional
accuracy for certain data sets. Comparisons with a sampling of standard clas-
sification approaches supports that the accuracy of the C-NN-CDH approaches
is competitive with those methods. In particular, this hybrid method provides
accuracy comparable to that of a network-only method dedicated to the clas-
sification task, while its use of CBR provides at least two benefits: Inertia-free
lazy learning (avoiding the need for costly retraining with new data), and the
ability to provide cases that can be considered when assessing a classification;
similar cases can be useful for explanation [5], and less similar cases—for exam-
ple, whose classifications are changed by adaptation—may be useful as nearest
unlike neighbors [21] or counterfactual explanations [12].
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2 Background

2.1 Learning Case Adaptation Knowledge

Adaptation is arguably the most difficult process in CBR. Much CBR research
has applied machine learning to acquire adaptation knowledge of different forms.
Some approaches apply case-based reasoning to adaptation. For example, Leake
et al. [15] present a method in which a case base of pairs of cases is populated
from past successful adaptations, and Craw et al. [4] assemble pairs of stored
cases, retrieve the pair most similar to the pair of a retrieved case and the query,
and adapt the retrieved case toward the current query.

The case difference heuristic (CDH) approach [9] is a widely used knowledge-
light method for learning case adaptation rules from knowledge contained in the
case base. For each pair of cases, the CDH approach generates an adaptation
rule capturing the transformation needed to adapt the solution of one case into
the solution of the other. Specifically, it attributes the difference in the cases’
solution descriptions to the difference in their problem descriptions. When de-
ciding applicability of the generated rules in the future, the rule is considered to
apply if the difference between the retrieved case’s problem and the new problem
is similar to the difference from which the rule is generated. Thus the similarity
to the original difference becomes the antecedent for the rule. When triggered,
the rule adapts the retrieved case’s solution according to the previous solution
difference.

Applying the case difference heuristic depends on several design questions.
One concerns how to calculate problem differences; Another concerns how to
select the case pairs for training (e.g., from pairs of neighboring cases or from
random pairs); Another concerns how to translate a raw solution difference into
the change to be effected by the rule, for example, as an additive, multiplicative
or other change. There have been many variations of CDH (e.g. [4, 10, 17, 23]).
This paper proposes a general approach in which difference and changes are
learned by a neural network. It remains agnostic on such design decisions.

Augmenting CDH with Network Methods Adaptation rule generation us-
ing the CDH approach is often shaped by pre-defined criteria for generating rules
from differences. In contrast, machine-learning-based approaches [3, 4, 17, 23, 29]
provide increased flexibility. Liao, Liu, and Chao [17], Policastro, Carvalho, and
Delbem [23], and Zhang et al. [29] propose a network approach in which the net-
work generates adaptations from a problem and retrieved solution passed to the
network. Part of the appeal of network-based approaches is that network learn-
ing facilitates the generation of more complex transformation functions. Outside
of CBR but in similar spirit, Wetzel et al. [24] use a siamese network to predict
the target value differences given two data points, and predict a target value us-
ing an ensemble of training data points. Leake, Ye, and Crandall [16] follow the
CDH approach of Craw, Wiratunga, and Rowe [4], by considering both problem
difference and adaptation context. Following Liao, Liu, and Chao [17], Leake, Ye
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and Crandall propose a neural network based case difference heuristic approach,
NN-CDH, as a general technique for regression tasks.

Applying the CDH Method to Classification The traditional CDH ap-
proach has been successfully applied in solving regression tasks. However, less
research has addressed classification tasks or dealing with nominal attributes in
generating adaptation rules. Early approaches that adopt CDH for classification
or dealing with nominal attributes relied on exact matching and binarization
(e.g., [2, 7]) which can only express the relationship between nominal values us-
ing one bit of information (i.e. 0 and 1). More recently, CDH was enhanced
with the Value Difference Metric (VDM) [11]. VDM is a probabilistic method
to measure similarity that makes it possible to compare nominal values in a
one dimensional numeric space. Another contribution of that work was to use
an ensemble of adaptations for classification (EAC) to retrieve multiple source
cases, generate needed adaptation rules, adapt from all retrieved source cases,
and produce a final solution by the majority vote of all adapted solutions.

To illustrate the importance of expressive power in comparing nominal val-
ues one can consider an example classification task where the goal is to decide
whether a given fruit is apple or not based on the color of the fruit. In this case,
binarizing color results in capturing the difference between the colors red and
yellow as the same as that between the colors red and blue. However, using a
more expressive method like VDM enables recognizing the relative proximity of
colors red and yellow compared to that of colors red and blue. Recent advances in
deep neural networks have made it possible to take the expressive power in com-
paring nominal values a step further by expressing them in multi-dimensional
space as embedding vectors. To the best of our knowledge this has not been
exploited previously for CDH learning.

2.2 Class-to-class Methodology

Class-to-class (C2C) methodology is a difference-based approach that classifies a
query based on instances from multiple classes [25–27]. A C2C model first learns
the similarity and difference patterns between pairs of classes. Given two cases,
the trained C2C model can determine whether their similarity and difference
conform to learned patterns. If they do, the C2C model can provide evidence for
their belonging to the corresponding classes.

Traditional case-based methods explain their conclusion by the most similar
case retrieved and its adaptation, while C2C methods can explain with both
supportive and contrastive evidence. The contrastive evidence from the C2C
methodology is one type of counterfactual explanation (cf. Keane and Smith
[12] and Kenny and Keane [13]). For example, for an applicant rejected of a
loan, the supportive explanation is that another applicant with similar status is
also rejected, and the contrastive explanation is that if this applicant had better
credit history, (s)he would have been similar to an accepted applicant.
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Fig. 1. Workflows of NN-CDH (left) and C-NN-CDHs (right). Variants (1-5) of C-
NN-CDHs involve different procedures and arrows are marked with the corresponding
numbers to reflect that.

3 An NN-CDH Approach for Classification

NN-CDH and other CDH methods learn from pairs of cases. One of the pairs is
treated as the source case (with its source problem and solution) and the other
as the target (with its target problem and solution), where the source is to be
adapted toward the target. For simplicity, we will refer to these as a case pair. A
CDH method learns an adaptation rule to adapt the solution of the source case to
provide a solution for the target case. For an NN-CDH approach, the CBR system
first retrieves a source case similar to the query (target case), and calculates
the problem difference between the source problem and the target problem.
The problem difference is then passed to a neural network, which is previously
trained on problem and solution differences of training case pairs. The neural
network predicts the solution difference between the source solution and the
target solution. Finally, the CBR system applies the predicted solution difference
to the source solution, and uses the adapted result as the final prediction. This
process is shown in Figure 1.

Calculating the difference between problem or solution values requires a dif-
ference function, which is especially difficult to define for nominal values.

Our method replaces the traditional CDH difference calculation by the im-
plicit calculation of a machine learning technique (e.g. neural network), poten-
tially taking into account not only the difference, but the context of the source
case itself. We name this general approach of handling pairs of cases as the case
difference heuristic approach for classification (“C-CDH”).

As a baseline testbed system, we implemented a C-CDH system that stores
case pairs treated as adaptation rules. The case pairs are grouped based on
source solution. We refer to this as variant (0) and describe it in Algorithm 1.
The system performs classification by retrieving the most similar source case,
and retrieving the case pair, which is selected to share the same source solution
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Algorithm 1 C-CDH, variant (0)

1: for each i in all classes do
2: case pairs[i] ← {}
3: for each source and target in pairs do
4: case pairs[sol(source)].append([prob(source), prob(target):sol(target)])

5: procedure Testing(query)
6: retrieved← 1-nn(CB, query)
7: r ←1-nn(case pairs[sol(retrieved)], [prob(retrieved), prob(query)])
8: return r

Algorithm 2 C-NN-CDH, variant (1-2)

1: adapt NN ← new classification neural network
2: case pairs ← {}
3: for each source and target in pairs do
4: if using variant (1) then
5: case pairs.append([prob(source), prob(target):sol(target)])
6: else if using variant (2) then
7: case pairs.append([prob(source), prob(target), sol(source):sol(target)])

8: adapt NN .fit(case pairs)
9: procedure Testing(query)

10: retrieved← 1-nn(CB, query)
11: r ← adapt NN .predict(prob(retrieved), prob(query), sol(retrieved))
12: return r

and has the most similar source problem and target problem (cf. [20]). The target
solution of the retrieved case pair is used as the final classification.

Our implementation of C-CDH uses a classification neural network to learn
and predict the target solution based on information from the source problem
and the target problem.

This is the basic version of classification with a neural network based case
difference heuristic (C-NN-CDH) approach and will be referred to as variant (1).
As a direct extension, we built variant (2) in which the adaptation neural network
also takes in the source solution as input. Variants (1) and (2) are described in
Algorithm 2.

Variants (3-5) add grouping of case pairs based on their source solutions.
The target solutions in a group are not restricted. With grouping, an adapta-
tion neural network can be trained on a specific group of case pairs to learn the
adaptation knowledge where the source solution is determined. In other words,
each specialized adaptation neural network learns how to adapt cases of
a specific solution toward all solutions (including the source solution). By seg-
menting the pairs of cases based on source solutions, we naturally incorporate the
source solution as an important input, as it determines which specialized adap-
tation neural network to use. The training is also easier as one group of case
pairs is more homogeneous and the knowledge to learn is more specific. Variants
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Algorithm 3 C-NN-CDH, variant (3-5)

1: for each case in CB do
2: CB by class[sol(case)].append(case)

3: for each i in all classes do
4: case pairs[i] ← {}
5: for each source and target in pairs do
6: case pairs[sol(source)].append([prob(source), prob(target):sol(target)])

7: for each i in all classes do
8: adapt NN [i]← new classification neural network
9: adapt NN [i].fit(case pairs)

10: procedure Testing(query)
11: if using variant (3) then
12: retrieved← 1-nn(CB, query)
13: r ← adapt NN [sol(retrieved)].predict(prob(retrieved), prob(query))
14: else if using variant (4) then
15: for each retrieved in k-nn(CB, query) do
16: rs.append( adapt NN [sol(retrieved)].predict(prob(retrieved), prob(query)))

17: r ← majority vote(rs)
18: else if using variant (5) then
19: for each i in all classes do
20: retrieved← 1-nn(CB by class[i], query)
21: rs.append( adapt NN [i].predict(prob(retrieved), prob(query)))

22: r ← majority vote(rs)

23: return r

(3-5) share the same training procedure for their specialized adaptation neural
networks but differ in their testing procedures.

Variant (3) predicts the target solution by retrieving the most similar source
case and using one specialized adaptation neural network. Inspired by the en-
semble of adaptations for classification approach (EAC) [11], variant (4)—named
EAC-NN-CDH—retrieves k multiple similar source cases (we used k = 3), adapts
all source cases using corresponding specialized adaptation neural networks, and
selects a classification by majority vote. Ties are broken arbitrarily.

Variant (5) is inspired by class-to-class (C2C) methodology and named C2C-
NN-CDH. In this study, C2C-NN-CDH retrieves one most similar source case
from each class, adapts all source cases using their corresponding networks, and
uses the majority vote to decide the final classification. The voting process is
similar to the all-versus-all approach in multiclass classification [1]. Variants (3-
5) are described in Algorithm 3.

Variants (1-5) are illustrated in Figure 1. All variants are summarized below:

(0) Non-network C-CDH.
(1) C-NN-CDH with one adaptation neural network that considers source prob-

lem and target problem.
(2) is based on (1), but also considers source solution.
(3) uses multiple specialized adaptation neural networks.



8 Xiaomeng Ye, David Leake, Vahid Jalali and David Crandall

(4) is based on (3), but uses an ensemble of adapted solutions from multiple
cases.

(5) is based on (4), but uses an ensemble of adapted solutions from multiple
cases of all classes.

4 Evaluation

We evaluated all variants (0-5) on two groups of data sets. The first group of
data sets follows those used in Jalali, Leake, and Forouzandehmehr [11], to enable
comparison with the previous state of the art on statistical CDH classification.
Experiments on this group allow comparison with the ensemble approach EAC
and EAC-retrieval, an ablated EAC removing the adaptation component. The
second group of data sets is a subset of data sets in the comparative evalua-
tion of classification algorithms by Zhang et al. [28]. Experiments on this group
allow comparison with algorithms evaluated in that paper, including: Extreme
Learning Machine (ELM), Sparse Representation based Classification (SRC),
Deep Learning (DL), Support Vector Machine (SVM), Random Forests (RF),
AdaBoost (AB), C4.5, Naive Bayes classifier (NB), K Nearest Neighbours clas-
sifier (KNN) and Logistic Regression (LR). We compare the results of runs of
our systems with the reported results from Jalali, Leake, and Forouzandehmehr
[11] and Zhang et al. [28]. We note that the data preprocessing steps are not
described in detail in the two papers. This may result in minor variations.

All data sets are for classification tasks, taken from UCI repository [6]. All
nominal values are converted to one-hot encoding and all numeric values are
standardized by removing the mean and scaling to unit variance. For most data
sets, five 10-fold cross validations are carried out, where 10% of the total cases
are used for testing and 90% are used for training (only two 10-fold cross valida-
tions are run for two larger data sets with excessive training time). The average
accuracies and balanced accuracies (with their standard deviations) of all runs
for each data set are recorded. Standard deviations are omitted in reports below
as almost all are less than 0.05. Balanced accuracy in general is comparable to
accuracy but is not shown for reasons of space.

4.1 Assembling Case Pairs

As discussed in Section 2.1, the collection of case pairs is a design problem for
CDH. Given a training data set of n cases and m classes, our test implementa-
tions learn adaptation knowledge from three kinds of pairs from the case base:

– Neighboring pairs: Each case is paired with its nearest neighbor using 1-NN
(k-nearest neighbor with k = 1). There are n neighboring pairs.

– Random Pairs: Each case is paired with 10 random cases. There are 10n
random pairs.

– Class-to-class Pairs (C2C Pairs): Each case is paired with its nearest neighbor
in every other class. There are n(m− 1) pairs.
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Each type of pairs provides one specialized form of adaptation knowledge
to the adaptation model: The neighboring pairs provide minor adaptations to
cover small problem differences; The random pairs provide random and bigger
adaptations; The C2C pairs provide adaptations needed to change one case into
other classes. The number of each kind of pairs is a design parameter that could
be fine tuned. Pairs might also be selected according to other criteria such as
generality or applicability, but this is beyond the scope of this study.

4.2 Implementation Details

For the C-CDHs, the retrieval component retrieves a single case. As baselines
for performance without adaptation, we also implemented nearest neighbor al-
gorithms 1-NN and 3-NN, with 3-NN averaging the classifications of the three
most similar cases.

The adaptation neural network is a feedforward network with 2 hidden layers
(128 and 64 nodes with ReLU activation functions) and an output layer with
softmax activation function. The loss function is categorical cross entropy and the
model is optimized using Adam [14]. For comparison, a neural network classifier
is implemented with the same configuration. Note that the adaptation neural
network is a component in the CBR system (C-NN-CDH) and it produces the
final classification based on a retrieved case and the query, while the neural
network classifier directly produces the final classification based solely on the
query. All networks are trained until their parameters converge.

For 3-NN and 1-NN, all training cases are used as the case base. For the
neural network classifier, 10% of the training cases are separated out for training
validation. For all the C-CDHs, pairs are assembled using methods described in
Section 4.1. For non-network variant (0), all case pairs are stored for future
search. For the adaptation neural networks in variants (1-5), 95% of the case
pairs are used for training and 5% for validation.

4.3 C-NN-CDH vs. EAC

Table 1 compares the accuracy of C-NN-CDH with EAC. The accuracy of the
best performing system and the best performing C-CDH for every data set is
highlighted. We observe:

– The non-network C-CDH often makes the retrieval result of 1-NN worse.
Because all variants use the same retrieval, this can be ascribed to variant
(0) actually impairing performance. We hypothesize that this is due to using
untuned retrieval for case pairs.

– The C-NN-CDHs have slightly different performance, the best of which is on
par with that of the neural network classifier.

– The C-NN-CDHs consistently improve the retrieval result of 1-NN. The C-
NN-CDHs also outperform EAC in many experiments. Note that the EAC-
retrieval, by using a probability-guided metric, is often better than 1-NN.
This means that C-NN-CDHs build on worse retrieval than EAC but end
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EAC Baseline Systems C-CDHs

EAC-retrieval EAC NNet 3-NN 1-NN (0) (1) (2) (3) (4) (5)

Credit 0.8189 0.8436 0.8633 0.8333 0.7978 0.7004 0.8205 0.8153 0.8229 0.8253 0.8453
Balance 0.7474 0.8402 0.9737 0.7964 0.7769 0.6561 0.9792 0.9785 0.9763 0.9737 0.976
Car 0.935 0.9605 0.9974 0.8313 0.781 0.6822 0.9993 0.9991 0.989 0.9936 0.9946

Table 1. Accuracies of Systems Compared with EAC [11]

Baseline Systems C-CDHs

NNet 3-NN 1-NN (0) (1) (2) (3) (4) (5)

Neural Network Yes Yes Yes Yes Yes Yes
Segmented Training Yes Yes Yes
Ensemble Yes Yes Yes
Class-to-class Yes

Yeast 0.5983 0.5010 0.5317 0.4230 0.5218 0.5176 0.4648 0.4923 0.5833
Seeds 0.9400 0.9152 0.9285 0.8523 0.9533 0.9533 0.9361 0.9514 0.9485
Pima 0.7536 0.7320 0.7057 0.6408 0.6940 0.6955 0.6802 0.6908 0.7216
Page-blocks 0.9685 0.9665 0.9646 0.9473 0.9595 0.9566 0.9489 0.9515 0.9675
Contraceptive 0.5439 0.4103 0.4346 0.3891 0.4744 0.4778 0.4870 0.4859 0.5139
White Wine 0.5763 0.5425 0.6569 0.4693 0.6353 0.6344 0.5504 0.6035 0.6354
Balance 0.9737 0.7964 0.7769 0.6561 0.9792 0.9785 0.9763 0.9737 0.9760
Car 0.9974 0.8313 0.7810 0.6822 0.9993 0.9991 0.9890 0.9936 0.9946

Table 2. Variant Characteristics and Variant Accuracies Compared with Classifiers
in [28]

with better results, demonstrating the value of their learned adaptation ca-
pability.

4.4 C-NN-CDH vs. Other Classification Algorithms

We compare variants of C-CDH with 11 state-of-the-art classification algorithms
(referred as other algorithms) that are not necessarily related to CBR [28]. Data
sets are chosen to be compatible with the our baseline and proposed systems. In
other words, they require no additional preprocessing and are not complicated
data such as images or structured sequences.

In Table 2, for each data set, the accuracies of the baseline systems and C-
CDHs are listed. In Table 3, the best and the worst of the other algorithms and
their corresponding accuracies are listed for comparison. Last, the best perform-
ing C-NN-CDH is chosen and its projected rank is shown in Table 3—i.e., the
rank if it were ranked among the other algorithms. We observe:

– The average rank of our best C-NN-CDHs is 3.4. In Zhang et al. [28], SVM
has an average rank of 3.5 and is the 3rd best among the 11 classifiers in
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Best Best C-CDH Worst

Name Accuracy Name Accuracy Rank Name Accuracy

Yeast ELM 0.6487 (5) 0.5833 7 DL 0.3311
Seeds KNN 0.9524 (1,2) 0.9533 1 DL 0.2381
Pima AB 0.8312 (5) 0.7216 6 DL/SRC 0.5974
Page-blocks SVM 0.9444 (5) 0.9675 1 ELM/DL 0.8704
Contraceptive GBDT 0.5541 (5) 0.5139 7 AB/DL 0.4122
White Wine AB/DL 0.5694 (5) 0.6354 1 NB 0.3959
Balance SRC 1.0000 (1) 0.9792 2 DL 0.4603
Car GBDT 1.0000 (1) 0.9993 2 AB/DL 0.6705

Table 3. Rank of Best C-CDHs among Classifiers in [28]

terms of average rank (However we do not test C-NN-CDHs on all the data
sets as in Zhang et al. [28]).

– C-NN-CDHs do not always improve the final result compared to the simple
retrieval of 1-NN. For example, when testing on white wine quality, all C-
NN-CDHs perform worse than 1-NN. We hypothesize that this is due to the
high number of classes in this data set and the subjective nature of wine
quality. When the relation between problem and solution is highly volatile,
nearest neighbor is already a good guess while any adaptation might alter
the prediction for worse.

4.5 C-NN-CDH vs. Baseline Neural Network

Because standard deviation is not reported in the works being compared to C-
NN-CDH [11, 28], we are not able to calculate a P-value stating the significance
of the difference between C-NN-CDHs and their methods. However, we are able
to do so for the difference between the best performing C-NN-CDH and the
baseline neural network in Table 4. The P-value is the probability of obtaining
the observed difference between the samples if the null hypothesis were true.
The null hypothesis states that the two distributions of results are the same.
The calculation is based on the assumption that the distributions are normal.
As Table 4 shows, the neural network wins in 3 data sets, C-NN-CDH wins in
2, and there are no significant differences between the two in the remaining half
of the data sets.

It is expected that Table 4 does not show a clear advantage of C-NN-CDH
over neural network in terms of accuracy, because the two use the same archi-
tecture and are naturally of similar power. However, C-NN-CDH is a component
generally applicable to CBR classification systems, which can offer benefits such
as lazy learning and explainability, in contrast to a neural network.

4.6 Evaluation Summary

From experiments on both groups of data sets, we answer the following questions:
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NNet Better <—————>C-NN-CDH Better
Contra. Pima Credit Yeast Page-b. Seeds Balance Car White W.

NNet 0.5439 0.7536 0.8633 0.5983 0.9685 0.9400 0.9737 0.9974 0.5763

C-NN-CDH 0.5139 0.7216 0.8453 0.5833 0.9675 0.9533 0.9792 0.9993 0.6354

P-value 0.0004 0.0006 0.0525 0.0687 0.6761 0.1407 0.1373 0.0174 <0.0001
Table 4. The Significance of the Difference between Best Performing C-NN-CDH and
Baseline Neural Network

– Can the neural network effectively learn adaptation knowledge?

Yes. One or more C-NN-CDHs can always provide performance comparable
or even surpass that of the neural network classifier. In principle the adap-
tation neural networks might learn to discard the source problem and solely
use the target problem to predict the target solution, effectively performing
as a neural network classifier. However, our experiments reveal that this is
not the case, because (1) the weights associated with the source problem are
non-zero, and (2) as shown in Table 4, C-NN-CDHs perform significantly
differently from the neural network in multiple experiments. C-NN-CDHs
are indeed learning adaptation knowledge.

This demonstrates that if a neural network is powerful enough to tackle the
classification task directly, it may also be powerful enough to learn the adap-
tation knowledge or the relation between pairs of cases in the task domain.

– Is the source solution an important attribute to consider in adap-
tation?

Not necessarily. A surprising result is that variant (1) actually performs
almost identically to variant (2), which also considers the source solution in
adaptation. We speculate that this is because the source solution is heavily
coupled with the source problem, and therefore does not provide additional
information useful in adaptation.

– Does segmenting pairs of cases by source case solution lead to
better performance?

This depends. In terms of accuracy, variants (1,2) actually perform better
than variants (3,4) in most data sets. We speculate that this is because
a single adaptation neural network in (1,2) is well trained with all pairs
of cases, while a specialized adaptation neural network in (3,4) is trained
with a segmented group of examples. In terms of efficiency, the training time
needed for variants (1,2) are several times higher than that for variants (3,4).
This is expected as variants (3,4) train on segmented training examples, and
therefore converge faster.

– Does an ensemble of adaptations improve accuracy?

Not really, for these data sets. EAC-NN-CDH (variant (4)) performs about
the same as its counterpart variant (3) without ensemble. [11] showed that
EAC adaptation is a better adaptation method than applying a single adap-
tation rule, while we do not observe a significant benefit of EAC-NN-CDH
over C-NN-CDH. We attribute this to the generalization power of C-NN-
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CDH, which produces predictions stable enough that an ensemble version
does not appreciably alter its prediction.

– Is a class-to-class methodology useful for adaptation?
Yes. C2C-NN-CDH (variant (5)) performs differently from and, in many sce-
narios, better than the other C-NN-CDHs. C2C-NN-CDH reaches its predic-
tion by collecting evidence from diverse source cases from all classes, which
can form a global support especially when there are multiple classes. More-
over, C2C methodology offers the possibility of explanation with contrastive
evidences.

5 Conclusion

The flexibility of a case-based reasoning system to solve novel problems depends
on its ability to adapt prior solutions to new circumstances. The generation
of knowledge for adapting cases is a classic challenge for case-based reasoning.
The case difference heuristic approach is a knowledge-light method for learning
adaptation knowledge. Neural network based CDH has been successfully applied
to case-based regression but not previously to classification.

This paper presents a method with multiple variants for extending network
CDH for classification tasks with three contributions beyond the prior methods.
First, variants (3-5) group the pairs of cases used for learning by the solutions of
the source problems they adapt, generating per-category adaptation knowledge.
Second, they apply one or multiple neural networks to learn the adaptation
knowledge for classification. Third, variant (5) utilizes cross-class adaptation to
reach a conclusion from cases of diverse classes.

In summary, the C-NN-CDH approach achieves better performance than
EAC, the state of the art in statistical CDH adaptation, and is on par with
standard classification methods from outside of case-based reasoning. It is gen-
erally applicable to CBR framework and thus preserve other benefits of CBR
including lazy learning and explainability.
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