Information and Software Technology 67 (2015) 1-12

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Comparative case studies of open source software peer review
practices

@ CrossMark

Jing Wang **, Patrick C. Shih®, Yu Wu?, John M. Carroll ®

2 College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA 16802, USA
b Department of Information and Library Science, Indiana University, Bloomington, IN, USA

ARTICLE INFO ABSTRACT

Article history:

Received 24 November 2014
Received in revised form 5 May 2015
Accepted 10 June 2015

Available online 17 June 2015

Context: The power of open source software peer review lies in the involvement of virtual communities,
especially users who typically do not have a formal role in the development process. As communities
grow to a certain extent, how to organize and support the peer review process becomes increasingly chal-
lenging. A universal solution is likely to fail for communities with varying characteristics.
Objective: This paper investigates differences of peer review practices across different open source soft-
ware communities, especially the ones engage distinct types of users, in order to offer contextualized
guidance for developing open source software projects.
Method: Comparative case studies were conducted in two well-established large open source communi-
ties, Mozilla and Python, which engage extremely different types of users. Bug reports from their bug
tracking systems were examined primarily, complemented by secondary sources such as meeting notes,
blog posts, messages from mailing lists, and online documentations.
Results: The two communities differ in the key activities of peer review processes, including different
characteristics with respect to bug reporting, design decision making, to patch development and review.
Their variances also involve the designs of supporting technology. The results highlight the emerging role
of triagers, who bridge the core and peripheral contributors and facilitate the peer review process. The
two communities demonstrate alternative designs of open source software peer review and their trade-
offs were discussed.
Conclusion: It is concluded that contextualized designs of social and technological solutions to open
source software peer review practices are important. The two cases can serve as learning resources for
open source software projects, or other types of large software projects in general, to cope with chal-
lenges of leveraging enormous contributions and coordinating core developers. It is also important to
improve support for triagers, who have not received much research effort yet.

© 2015 Elsevier B.V. All rights reserved.

Keywords:

Open source software
Virtual community
Software peer review
Design

1. Introduction

A distinct and powerful characteristic of open source software
(0OSS) development is the involvement of communities that engage
general users who do not belong to typical software development
roles. This has made OSS development an appealing research area
[2,24,42,43]. Recent advances of social computing infrastructure
create opportunities for OSS projects to leverage an even larger
crowd [12], as is demonstrated by GitHub’s surpassing other open
source forges in total number of commits in 2011 [15].

* Corresponding author at: 316C IST Building, University Park, PA 16802 USA.
Tel.: +1 814 863 8856.
E-mail addresses: jzw143@ist.psu.edu (J. Wang), patshih@indiana.edu
(P.C. Shih), yuw132@ist.psu.edu (Y. Wu), jcarroll@ist.psu.edu (J.M. Carroll).

http://dx.doi.org/10.1016/j.infsof.2015.06.002
0950-5849/© 2015 Elsevier B.V. All rights reserved.

Among various forms of participation in a community, peer
review is widely regarded as the one that significantly benefits
from the community involvement. Raymond coined “Linus’s law”
(“given enough eyeballs, all bugs are shallow”) to emphasize the
advantage of extensive peer review in OSS development [31]. It
is the practice in which community members evaluate and test
software products, identify and analyze defects or deficiencies,
and contribute and verify solutions (e.g., patches) that repair or
improve them.

This community-based practice raises the question of how com-
munities organize their peer review process, especially when they
have reached a large scale. As OSS communities grow and mature,
they encounter new challenges of engaging contributions, coordi-
nating work, and ensuring software quality [27,38]. Without expli-
cit coordination mechanisms and governance, their sustainability

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.06.002&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2015.06.002
mailto:jzw143@ist.psu.edu
mailto:patshih@indiana.edu
mailto:yuw132@ist.psu.edu
mailto:jcarroll@ist.psu.edu
http://dx.doi.org/10.1016/j.infsof.2015.06.002
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

2 J. Wang et al./Information and Software Technology 67 (2015) 1-12

and evolution will be challenged [17,26]. Therefore, reflecting on
the practices of well-established large OSS communities could pre-
pare other growing OSS projects of how to overcome such
challenges.

Each project has its own uniqueness and no one-size-fits-all
model can ensure success [4]. Studies on activities related to OSS
peer review (e.g., [21,28,34]) have already showed initial evidence
that the peer review practice is likely to vary across different 0SS
communities. However, those analyses did not spend much effort
articulating the variances. They were largely focused on extracting
commonalities among OSS projects or characterizing a single pro-
ject, reporting the common constituting activities of OSS peer
review including submission/bug reporting, analysis/design dis-
cussion, fix/patch development, test/patch review [10,45].

Our investigation is aimed at extending prior research with a
dedicated codification of different OSS peer review practices,
which can provide contextualized implications for other develop-
ing OSS projects. We use the term “peer review” in a broad sense
to include all types of efforts in detecting software defects or defi-
ciencies rather than confine it to code reading. As a distinctive and
pivotal characteristic of OSS peer review, user involvement
undoubtedly contributes to the differences among the practices.
Users are also a substantial participating group of OSS communi-
ties, from which peer review practices cannot be detached.
Considering the unique quality and the context complexity, we
contrast OSS peer review practices through case studies on two
well-established large communities that produce software target-
ing remarkably different types of users—software developers and
end-users. Two communities can by no means cover all the varia-
tions of OSS peer review practices, but can still provide important
insights [4]. Moreover, comparing the two ends of a spectrum of
user technical expertise highlights the differences of significance
as well as enables an appropriate and flexible combination
in-between.

Our study contributes to alternative designs of social mecha-
nism and technology for OSS peer review. We identify differences
in bug reporting, design decision, and patch development and review,
the key activities constituting peer review practices, as well as in
the tool affordance and use between two well-established large
0SS communities. Our findings highlight the importance of tria-
gers, an emerging group of contributors who mediate between
the core and periphery and facilitate the peer review process. We
also characterize how core developers collaborate differently in
response to the different types and sizes of peripheral participants.
This extends prior research that primarily focused on comparing
between core and periphery.

2. Related work
2.1. Community-based open source software development

The openness of OSS to users and the engagement of virtual
communities have been attracting considerable research efforts.
Findings and discussions have centered on the different contribu-
tions from core and peripheral members. Quantitative examina-
tions repeatedly detected skewed contribution distribution: a
small group of developers in the core contributed majority of the
code, while the rest in the community mainly made occasional
contributions by reporting bugs [18,25,28]. Subsequent work elab-
orated the roles of core and peripheral members in OSS develop-
ment. Dahlander and Frederiksen [13] studied how peripheral
participants affect OSS innovation. They found that one’s position
in the core/periphery structure is more consequential for innovat-
ing than his/her expertise. Rulliani and Haefliger [36] described the
role of core developers and those in the peripheries, and how the

propagation of such standards is communicated through
non-material artifacts such as code and virtual discussions as a
social practice. Another related theme focused on how peripheral
participants advanced to core developers through either legitimate
peripheral participation [29] or socialization [14,44].

Some OSS studies described the roles in OSS development at a
finer level than the dichotomy, but most of them still classified
through the lens of users versus developers. The best-known
examples from this group of work probably include the “onion
model” [8] and the layered community structure [52]. They share
similar ideas: developers other than the core contribute their
patches or review or revise others’ code, either regularly (i.e., active
developer/co-developer) or sporadically (i.e., peripheral devel-
oper); users consist of active ones who report bugs and passive
ones who only use the software. Ko and Chilana [24] also identified
a group of users, power users, who submit quality bug reports. A
very small portion of research discussed the roles between users
and developers. Barcellini et al. [3] characterized the emerging
roles in the Python community. They studied 2 mailing lists (i.e.,
one user-oriented and one developer-oriented) and found that sev-
eral key participants act as boundary spanners across the commu-
nities for driving feature sets. They proposed a “role emerging
design” to support the coordination process in OSS.

Our study extends the understanding of roles in OSS communi-
ties through identifying and elaborating the emerging role of bug
triagers. While the OSS peer review process is not the same as fea-
ture discussions reported in the aforementioned OSS literature, we
found that bug triagers serve a similar boundary-spanning role for
resolving issues surrounding bugs. This role entails different types
of tasks depending on the characteristics of users and developers in
the community.

2.2. Software peer review in open source

Peer review is the evaluation of the quality of one’s work prod-
ucts by others. In software development, the primary objective of
peer review is to discover defects (or bugs) as early as possible dur-
ing development processes, suggest improvements and even help
developers create better products [48]. Code is not the only object
that peer review assesses but any artifacts created during the soft-
ware development process, such as requirements specifications,
use cases, project plans, user interface design and prototypes,
and documentation [22].

To this end, we use the term OSS peer review inclusively to refer
to the evaluation of the entire software application instead of con-
fining it to reading code or reviewing patches (i.e., change sets to
software products). We consider that such inclusiveness best suits
the original description of “extensive peer review” in OSS literature
[31]. Previous studies have identified common activities in the peer
review process [10,45]. It often begins with one submitting a bug
report (i.e., submission/bug reporting). Others diagnose the defect
causes and request additional information to determine whether
the bug should be fixed (i.e., analysis/problem identification/design
decision). Once a solution is generated (i.e., fix/solution genera-
tion/patch development), they evaluate then commit the solution
to the current software product (i.e., test/patch review and
commit).

Previous OSS studies have touched upon each individual activ-
ity involved in the OSS peer review process, but were largely
focused on the common characteristics across projects. With
respect to bug reporting, researchers found a mismatch between
the information users reported and the information developers
needed [6,45]. Ko and Chilana [24] examined the massive bug
reports in Mozilla, suggesting that reports that led to changes were
reported by a comparably small group of experienced frequent
reporters, who were the only valuable users to recruit in open

J. Wang et al./ Information and Software Technology 67 (2015) 1-12 3

bug reporting. Regarding design decision-making, scholars
observed lack of wusability discussions. They argued that
end-users and usability experts could provide special expertise
and knowledge the other developers do not have [2,4243].
Greater participation in decision-making was also found to be
associated with more effective projects [21]. Sandusky et al.’s anal-
ysis of Mozilla’s bug reports also uncovered the different values
and perspectives of individuals involved in determining bug legit-
imacy and best design option [37]. Work on patch development or
bug fixing was mainly focused on the coordination mechanisms,
which appeared to be biased toward action [50] and lacked formal
assignment [10].

Patch review, another critical activity in OSS peer review,
received relatively less research effort. Rigby et al. characterized
0SS patch review processes as two types, review-then-commit
(RTC) and commit-then-review (CTR) [33]. They studied several
0SS projects that all relied on mailing lists for patch review. They
found that roles were not assigned during the review process.
Broadcast-based review was carried out effectively when mailing
lists had separate topics or review requests specified reviewers
as Linux did [34]. More recently, Yang et al. [51] and Hamasaki
et al. [20] investigated the importance of OSS patch review contrib-
utor roles and their review activities from the Gerrit Code Review
System (Gerrit) used in the Android Open Source Project (AOSP) by
using social network analysis. Their analysis identified roles across
three phases of the code review process: (1) pre-review: author
and committer; (2) review: code reviewer, verifier, and approver;
(3) post-review: submitter. Mukadam et al. [30] also analyzed
the code review data from Gerrit used in AOSP and found similar
division of labor exists. However, these recent studies predomi-
nantly analyzed quantitative data provided in the code repository
(e.g., identifying activity trends based on timestamp, roles) without
correlating their findings using qualitative content analysis. Thus,
it is unclear how those roles were carried out and interacted with
each other.

A limited number of studies on peer review related activities
examined another interesting issue, the role of triagers. Xie et al.
[49] quantified the types of contributions triagers made to
Mozilla and Gnome, including filtering issues, filling missing infor-
mation, and classifying issues into their affecting products. Among
these contributions, non-developer triagers performed relatively
poor in accurately determining relevant product. They also sug-
gested that the issue attributes triagers modified differed between
Mozilla and Gnome, which they attributed to the differences of
user bases and community policies. Specifically, they found that
triagers modify Product, OS, Version and Severity in a larger frac-
tion of triaged issues for Mozilla and Priority in a larger fraction
of triaged issues for Gnome.

In line with Xie et al.’s [49] motivation, we study very different
0SS communities, seeking to characterize how each activity of the
peer review process was carried out differently. Our in-depth com-
parison between projects that targeted at extremely different types
of users and were at different scale extends existing research that
was primarily focused on either commonalities or an individual
case. This comparison is by no means intended to judge which
community is better; instead, our goal is to understand how differ-
ent OSS communities can better organize their work through such
a comparative analysis.

2.3. Technology support for open source software peer review

0SS peer review is supported by a variety of work-related tools
and communication technologies. Bug tracking systems serve as
the central place of collaboration for most large OSS projects.
They help developers keep track of reported defects or deficiencies
of source code, design, and documents. Version control systems

manage and synchronize the occurred code changes in the 0SS
peer review process, while communication tools such as mailing
lists and Internet Relay Chat (IRC) enable developers to have addi-
tional discussions on bugs. Several research papers have described
the basic functionalities of those tools (e.g., [32,35,40]).

Bug tracking systems have been widely adopted in large-scale
0SS peer review practices, because scaling becomes increasingly
difficult for mailing lists despite developers’ high familiarity with
emails. Besides functioning as a database for tracking bugs, fea-
tures, and other inquiries, bug tracking systems also serve as a
focal point for communication and coordination for many stake-
holders (e.g., customers, project managers, quality assurance per-
sonnel within and beyond software development team) [5].
Bugzilla is employed by many large OSS communities, which
include Mozilla, GNOME, Netbeans, and Apache [19]. It is relatively
sophisticated, sharing the common features with most other bug
tracking systems. These features consist of customizable fields,
email notifications, report exportation, discussion spaces for each
bug report, and simple charts visualizing the overall characteristics
of activities in the entire system.

Improving the design of bug tracking systems has engaged
ongoing effort. Despite some incremental improvements, many of
the designs remain merely better interfaces to a database that
stores all reported bugs [23]. Based on their examination of bug
reports from Mozilla and Eclipse, Breu et al. [6] suggested four
new ways to improve bug tracking system: (1) evolving informa-
tion needs, (2) tool support for frequent questions, (3) explicit han-
dling and tracking of questions, and (4) community-based bug
tracking. Research has also identified ways other than traditional
0SS peer review processes to enhance the code review process.
For example, open source code repository platforms such as
GitHub [12] use contributors’ reputation on past work and social
profile as a preliminary way to infer code quality. Their designs
have largely overlooked the different types of users and distinct
community contexts.

To enhance the understanding of how technologies can better
support OSS peer review processes, our study extends prior
research by presenting two design alternatives that were tailored
to different peer review processes, which took place in different
community contexts with different types of users. They provide a
starting point to break the “one-size-fits-all” way of designing
bug tracking systems.

3. Methods

Our overarching research objective was to unfold and contrast
different OSS peer review practices. As previous studies indicate
(e.g., Crowston and Scozzi [10]; Wang and Carroll, [45]), the OSS
peer review practice consists of four common activities despite
their naming variations. They include submission/bug reporting,
analysis/design discussion, fix/patch development, and test/patch
review. Our study, therefore, specifically examines the following
research questions:

(1) How do different OSS communities submit/report bugs?

(2) How do different OSS communities analyze reported soft-
ware defects and design issues?

(3) How do different OSS communities (develop a patch to) fix a
bug?

(4) How do different OSS communities review/test a patch?

3.1. Case selection and description

Case studies have been widely used as a way to generate useful
insights from successful exemplars in a variety of domains, includ-
ing open source software development [6,50,53]. We selected

4 J. Wang et al./Information and Software Technology 67 (2015) 1-12

Mozilla and Python for comparison. They both have relatively
established and stable peer review practices, which enabled us to
observe substantial instances of collaboration in their peer review
processes. In addition, they have been less intensively studied than
Linux and Apache, especially Python, as indicated by Crowston
et al.’s review [11]. We intentionally selected two established
and large communities for the purpose of codifying the good mod-
els of OSS peer review practices. Such codification was anticipated
to serve as resources that could inspire other types of OSS commu-
nities/systems, like new and unstable projects and smaller pro-
jects. Analyses have shown that small OSS projects only have one
or two developers and the majority of new projects failed because
of their inability to attract a critical mass of stable developers [7].
For projects at that scale, peer review can remain effective even
without explicit coordination mechanisms and governance, like
what Crowston and Scozzi [10] found after analyzing bug fixing
activities in small projects hosted at SourceForge. However, those
projects will need control and structure when they have grown
to a larger scale [26]. Peer review in large projects, like Mozilla
and Python, illustrates how the control and structure are
implemented.

An important reason we compare Mozilla and Python is the dif-
ferent users they target, who account for a significant portion of
0SS communities. The type of software being developed is a rela-
tively evident feature that can differentiate OSS projects. As a com-
monly used case sampling criterion (e.g., [10,34]), it has been
suggested for observing differences of OSS governance [26] and
found to be associated with member diversity influencing OSS peer
review processes [46], both of which are crucial to identify the dif-
ferences of our interest. Mozilla produces end-user applications,
such as Firefox, engaging a highly heterogeneous community. In
contrast, Python develops a computer programming language by
a relatively more homogeneous community. Mozilla divided its
core members into module owners, module peers, super reviewers,
security group members, and quality assurance members. Each
individual had specified areas to maintain and facilitate. For exam-
ple, Firefox had a module Session Restore, which was supported by
one module owner and three peers. Any changes toward this mod-
ule had to be reviewed and approved by one of them. Python clas-
sified its core developers in a relatively loose fashion. The core
members share the same privileges over the software code
repository.

Our deliberate selection of Mozilla and Python also took their
different community sizes into consideration. Mozilla is signifi-
cantly larger compared to Python. For example, Mozilla attracted
significantly more commits (~60,000), approximately 10 times,
compared to Python and Mozilla had more than 1200 active con-
tributors (compared to around 60 in Python) during 2014. The sig-
nificant size difference between the two large communities is
likely to pose distinct challenges to Mozilla and Python, entailing
different ways of organizing peer review.

Aside from the differences, Mozilla and Python share general
characteristics of community structure and supporting technolo-
gies with other established OSS communities. Community mem-
bers include both core developers who contribute significantly to
the project and peripheral members who use the software but
rarely participate in developing the software. Python has a
Benevolent Dictator for Life (BDFL) who makes the final say over
technical disputes. Mozilla and Python also have similar comput-
ing infrastructures that support their bug fixing activities, includ-
ing version control systems (Mercurial for Mozilla and
Subversion for Python), bug tracking systems (Bugzilla for
Mozilla and Roundup for Python), IRC, mailing lists and wikis.
For code review, Bugzilla implements a patch reviewer tracking
code changes, while Python recommends an external code review
tool Rietveld. Additionally, Mozilla describes their work in

ECMAScript proposals, W3C/WhatWG working group recommen-
dations, and Request For Comments (RFCs). Similarly, Python cre-
ates Python Enhancement Proposals (PEPs) for extensions of the
language, such as the introduction of a new feature (e.g. decora-
tors) or changes to the syntax.

3.2. Data collection and analysis

Our current analysis draws on bug reports of Firefox and Python
language from the bug tracking systems of Mozilla and Python. Bug
tracking systems are one of the primary data sources of bug fixing
practices in large OSS projects. Sampling from two core products,
Firefox and Python language, helped focus our investigation. Data
in our study were not generated for our research purposes, like
responses to pre-defined tasks or investigators’ inquiries, but
rather the records of public activities and conversations within
0SS communities and were collected in an unobtrusive way as part
of people’s natural work practices. Such type of data has been
widely used in OSS research (e.g., [10,28]). More importantly, the
goal of our study was to investigate work practices, which involve
multiple players and potentially last for a long time. The archival of
people’s activities and conversations is not confined by time frame
and does not rely on participants to articulate the routine aspects
or recall old episodes. The openness and reliance on distributed
collaboration of OSS further alleviates the common concern that
too much of data is private and not accessible. In this sense, the
public bug reports may have better validity.

In addition to the focus on bug reports archived in the bug
tracking systems, our interpretation was also informed by a variety
of other relevant data sources. For Mozilla, we examined 41 weekly
meeting notes, 22 web documents describing work procedures and
member roles, and 6 blog posts from individual members dis-
cussing Mozilla’s peer review processes. Python has slightly differ-
ent peer review practices: mailing lists were also sometimes in the
developer community to discuss controversial issues; although
Mozilla also maintains a super-review mailing list for patches that
need super reviewers’ assessment, the conversations at this list
were duplicate of discussions archived in bug reports. Thus, we
searched for the ID of bug reports we sampled through the archive
of the Python developer mailing list, which is the list that allows
bug discussions. This returned us 15 email threads. Another differ-
ence is that Python did not hold regular meetings to manage its
software development. The similar data sources we used from
Python’s public web resources consisted of 2 blogs explicitly dis-
cussing the peer review process from the active contributors of
Python and 17 web documents describing work procedures and
member roles. We relied primarily on artifacts that record actual
behaviors, namely bug reports and discussion threads at mailing
lists, to draw inferences presented in the paper. The web docu-
ments in which the organizations describes their work flow was
leveraged only for understanding the study context as well as clar-
ifying terms used in bug reports. Throughout the duration of data
collection and analysis, the first author also actively participated
in developer and community meetings and IRC discussions in these
communities. The participation helped clarify and validate con-
cepts whenever issues arose during the data analysis.

The selection of the data we collected was driven by our
research goal—investigating how open source software communi-
ties carry out peer review practices. These work practices are
rooted in complex community contexts, involve dynamic groups
of people who may represent diverse stakeholders, and are likely
to extend over a long time period. Such characteristics entail data
that are rich enough for in-depth analysis and have captured peo-
ple’s natural work activities. To this end, we selected the archival of
public activities and conversations related to peer review within
0SS communities as our major data source. This type of data is

J. Wang et al./ Information and Software Technology 67 (2015) 1-12 5

not confined by time frame or participants’ inability to articulate
the routine aspects or recall old episodes. The openness and reli-
ance on online collaboration of OSS further alleviates the common
concern that most data are private and not accessible unless they
are directly elicited for specific research purposes.
Well-recognized OSS studies have also frequently used this type
of data (e.g., [10,28]). Furthermore, we triangulated our findings
with other data sources through conducting virtual observation
on project meetings and informal interviews with community
members to enhance the validity.

We retrieved bug reports created between two stable releases
of Firefox and Python for analysis. The retrieval was performed
on July 28, 2011. This sampling strategy was intended to capture
the possible behavioral changes near releases [16]. For Mozilla,
7322 reports were filed between the Firefox 3.5 first official release
and the Firefox 3.6 first official release. For Python, 1850 issues
were generated between the Python 3.0 official release and the
Python 3.1 official release.

We used email addresses to identify Mozilla’s contributors and
Roundup user names to identify Python’s contributors. Core devel-
opers of Mozilla Firefox were defined as the ones listed on Mozilla’s
websites as module and sub-module owners and peers, Firefox
development team members, super reviewers, security group
members and members with additional security access, quality
assurance team lead, and platform engineers during the time
between Firefox 3.5 and 3.6 releases. 176 developers were identi-
fied in this category. For Python, core developers were defined as
committers listed on the community website between Python 3.0
and 3.1 releases. Crowston and Scozzi suggested that it may be
more useful to define core developers based on the amount of their
actual contributions rather than their job titles [9], but our
approach may better differentiate the incentives and responsibili-
ties of core developers from normal volunteers.

Overall, we sampled 10% of the bug reports of each project from
our retrieved data set, which included 732 Firefox bug reports and
185 Python issue reports. To accommodate the possible variations
of work processes and social interactions across bug reports, we
performed stratified sampling with respect to bug statuses and res-
olutions. In Bugzilla, open bug reports have 4 types of statuses—
unconfirmed, new, assigned, and reopened. Closed bug reports have
6 types of resolutions—fixed, duplicate, invalid, incomplete, works-
forme, and wontfix. In Python, closed issue reports have 10 types
of resolutions—fixed, duplicate, invalid, worksforme, wontfix,
accepted, later, out of date, postponed, and rejected. The rest of the
issue reports have 3 types of statuses: open, pending, and languish-
ing. For each of the 10 types of bug statuses and resolutions in
Mozilla and 13 types of bug statuses and resolutions in Python,
we sampled 10% of them: we first intentionally selected the most
highly discussed bug reports with a number of comments at the
98th percentile; then we randomly sampled the rest.
Oversampling long discussions might overestimate the collabora-
tion level. However, we found that collaboration is prevalent in
the projects, whether or not as intense as the long discussions
demonstrate. On average, 2 Mozilla members participated in dis-
cussing one bug (median=2; skewness = 6.765), contributing 3
comments in total (median = 3; skewness = 14.305); 3 Python mem-
bers contributed to each issue discussion (median=3; skew-
ness = 3.007), generating 4 messages (median = 4;
skewness = 5.669). Each bug report has its unique ID in both
Bugzilla and Roundup. We ordered the comments for each bug
report based on their posted time, numbering from O for the oldest
comment. When quoting discourses in the next section, we use the
following format—(bug ID; comment number; roles in the bug
report; roles in the community; case name).

Our qualitative analysis followed the grounded theory approach
to discover patterns and recurring themes [41]. Previous studies

have identified the key activities the OSS peer review process con-
sists of [10,45]. We used this understanding to guide our coding
process. Moreover, within each of these activities we used open
coding, because there was no existing schema. Although quantita-
tive approaches are advantageous at assessing performance/out-
comes or analyzing relationships (especially causal ones)
between quantifiable variables, our focus was to understand how
peer review was carried out and participants’ interactions in con-
sideration of the specific social context. We did not exclude any
type of participants from our analysis, including the ones reported
bugs, commented on bug reports, submitted code, and committed
patches. Such inclusiveness serves our goal of unfolding what peo-
ple do and how they do it in OSS peer review rather than why an
individual behave in a certain way.

The iterative refinement of themes was comprised of four
phases. First, the first and the second authors randomly selected
50 bug reports from both cases and read them separately. They dis-
cussed their observations and established a shared understanding
of the peer review process in Mozilla and Python. Then during
the second phase, the first author coded the 732 Firefox bug
reports, iteratively generated 628 codes by discussing with the
other authors during their weekly meetings. The first author con-
tinued to code the 185 Python issue reports mainly for identifying
the differences from our observation of Mozilla. An additional 174
codes were generated during the third phase. The first author dis-
cussed the new codes as well as observations other than the dis-
courses archived in bug reports with the other authors to further
codify the differences between cases. Finally, 16 groups of codes
that occurred the most frequently and were deemed the most rel-
evant to differences between the two cases were selected. Despite
the sequential difference in the coding process that the Mozilla
data were analyzed before the Python data, our analyses did not
differ in terms of their thoroughness between the two data sets.
As with the Mozilla dataset, we went through the entire Python
data sample and coded the narrative units of the Python data sam-
ple in its entirety. In our analysis, we identified commonalities and
differences between the two communities and presented them in
the paper. We do not think the order of the coding process affected
our findings; we would have arrived at the same conclusions if we
had coded the Python dataset first.

Overall, the 16 groups of codes occurred 203 times, accounting
for 10.87% of total occurrences. This ratio does not seem to be very
high because we did not code every difference, such as some char-
acteristics that occurred too frequently. For instance, Mozilla's
patch reviewers usually did not modify patches by themselves,
but this characteristic of not modifying code held true in almost
every bug report that had patches (n = 494). Then the authors inte-
grated the codes with observations other than discourses into 4
themes, which are presented in the following section.

4. Results

A quantitative overview of the activities involved in the peer
review process captured by our data sets shows remarkable differ-
ences between Mozilla and Python, particularly the contribution
volume and the participation scale and distribution of the commu-
nities (see Table 1). Within similar lengths of time—approximately
half a year between two official releases of products—Mozilla
reported a much larger number of bugs (n=7322) from a larger
group of people (n =5419) than Python did, for which 1850 issue
reports were submitted by 829 distinct participants. The contribu-
tors involved in the Mozilla peer review process through both
reporting and commenting on bug reports (n = 6704) were also of
much larger scale than those in Python (n = 1188). Moreover, the
portion of core developers among all the contributors in the

6 J. Wang et al./Information and Software Technology 67 (2015) 1-12

Table 1
Overview of peer review processes in Mozilla and Python.
Mozilla Python
Bugs reported 7322 1850
Distinct bug reporters 5419 829
Distinct bug contributors 6704 1188
(reporters and commenters)
Core developers 176 127
(Ratio among all contributors) (2.63%) (10.69%)
Bug reported by core developers 779 487
(Ratio among bugs reported) (10.64%) (26.32%)
False positives (non-real bugs) 3418 469
(Ratio among bugs reported) (46.68%) (25.35%)
Fixed bugs 498 832
| Core
[Periphery
Mozilla Python

Fig. 1. Comparison of the number of contributors and the portion of core
developers in Mozilla and Python (areas of the circles are proportional to the
number of people).

Mozilla community (2.63%) was much smaller compared to in the
Python community (10.69%) (also illustrated in Fig. 1).

Bugs filtered out, namely false positives, in Mozilla (n = 3418;
46.68%) were much more than in Python (n = 469; 25.35%). These
included bugs closed as duplicate, invalid, incomplete, wontfix, and
workforme in Mozilla, and issues closed as duplicate, invalid,
rejected, wontfix, worksforme, out of date, later, and postponed in
Python. Additionally, bug reports that had not been confirmed as
real bugs (n=2680) constituted a significant portion of the
Firefox open bugs (n =3406; 78.68%).

Further quantitative analysis indicates that collaboration is cru-
cial, to some extent, for the peer review process to accomplish its
goal in the two communities. By the time of our retrieval, 498 bugs
of Mozilla Firefox were fixed, while 678 issues of Python were
either fixed or accepted. Nonparametric tests (Mann-Whitney U
Test) indicate that fixed bugs involved relatively more participants
and comments. The difference is more significant in Mozilla
(pparticipant <.001, Pcomment < ~001) than in Python (pparticipant =.054,
DPcomment = 088)

Our subsequent qualitative analysis further identified the vary-
ing ways Mozilla and Python communities carried out peer review.
These differences encompass variances in each key activity that
constitutes the peer review process, from bug reporting, design deci-
sion making, to patch development and review, across different com-
munity contexts. The variances also include the different tool uses
involved in these computer-supported processes.

4.1. Bug reporting: Description vs. code

The different practices between the two communities emerged
since the beginning of the peer review process, bug reporting.
Although both descriptions and code are prevalent artifacts shared
in Mozilla and Python, participants in Mozilla seemingly tend to
report bugs by describing experiences, whereas those in Python

often through implementing code (e.g., patches, test cases).
Regardless of bug legitimacy, reporters of 276 Firefox bugs created
patches for their own reports (3.77%; n = 7322). In contrast, repor-
ters were also patch authors in 260 Python issues (14.05%;
n=1850). Moreover, 6.75% Firefox bug reports had patches
(n=7322), whereas the portion for Python was 40.32% (n = 1850).

The different styles of bug reporting are further demonstrated
when reporters articulate their intents for creating reports.
Specifically, many reporters in Mozilla reported bugs because they
experienced software dysfunction but were not capable of either
diagnosing the problem or fixing it. They contributed in order to
seek support from developers.

“[I] cant install pics for uploading to another site (snapfish) for
printing..it doesnt do anything on any website when i try to upload
pics (facebook)..is there something i need to download in order for
mozilla to open these pics files?? ...” (Bug 505703; comment 0;
reporter; peripheral participant; Mozilla)

Comparatively, Python reporters already found the solutions to
the problems they had encountered before submitting their bug
reports. The reason that they took the time to describe the problem
and upload fixes was to benefit other users, improve the software,
or at least share their findings. The example below shows that a
reporter suffered from the deficiencies of Python’s design and spent
a lot of effort developing a solution. He contributed back to the
Python community for others who might have similar experiences.

“When I first came across decorators (about a year ago?), they con-
fused the hell out of me, and the syntax is completely google-proof,
so I ended up having to ask on irc. One of the things that I tried was
help (‘@’) but that didn’t work either. This patch is to make that
work, and also a lot of other google-proof syntax constructs. ... I
hereby donate my code to whoever wants to commit it. Do what
you want with it, and clean it up however you want.” (Issue
4739; comment 0; reporter; peripheral participant; Python)

In response to the different forms of contributions from the
large diverse communities, experienced members appear to share
norms and organizational practices with different emphases to
help inexperienced participants make quality contributions.
Mozilla contributors often taught how to describe problems, such
as what types of information reporters should provide for the
bug. For instance, a Firefox end-user submitted a bug report titled
“Doesn’t preview in a browser when choose Firefox 3.5 from
Dreamweaver CS4 and CS3” with a brief description of his experi-
ence. Another participant who was an experienced contributor in
the community was confused, asking for clarification.

“Could you please read [a link] and comment with what exactly the
problem is, exact steps to reproduce the issue, screenshots/screen-
cast if needed, also if there are any errors in the error console.”
(Bug 502022; comment 1; commenter; active contributor; Mozilla)

In contrast, advice or instructions provided by Python partici-
pants often related to coding, such as adding documentation and
unit tests to patches.

“I have created a small patch, that adds method that formats using
a dict. It’s the first time I have written anything in python imple-
mentation, so I would very appreciate any advice.” (Issue 6081;
comment 2; patch author; peripheral participant; Python)

“Thanks for the patch. It would be nice if you could include unit
tests too.” (Issue 6081; comment 3; commenter; core developer;

Python)

To leverage enormous incoming contributions, experienced par-
ticipants also spend efforts triaging bug reports other than coach-
ing peripheral contributors to help peer review move forward.

J. Wang et al./ Information and Software Technology 67 (2015) 1-12 7

Triaging involves categorizing and prioritizing bug reports.
Confirming whether a reported problem is a real bug accounted
for a significant part of triaging efforts in Mozilla, given many
reports were false positives (n =3418; 46.68%). A dedicated group
of active contributors performed this task repeatedly, asking repor-
ters to obtain a stacktrace for crashes, check nightly build (the
newest code base), or test with safe mode and a clean new profile
as shown below.

“Try http://support.mozilla.com/en-US/kb/Safe+Mode and a new
additional test profile http://support.mozilla.com/en-US/kb/
Managing+Profiles” (Bug 507708; comment 1; commenter/active
volunteer).

Mozilla had not defined triagers as a formal role in the commu-
nity, although their work was common in the peer review process.
The organization had a quality assurance (QA) team that took on
some of those triaging responsibilities. However, most of them
relied on volunteers. To reward their contributions, Mozilla named
these people Friends of the Tree, of whom we identified 12 were
involved in the bug discussions we retrieved.

In contrast to Mozilla, the triaging role in Python was defined
even more informally, focusing on drawing developers’ attention
to patched reports rather than confirming symptoms. Beside core
developers who acted as triagers spontaneously, only a single indi-
vidual consistently played this role in our data sample. Five other
active contributors who were not core developers participated
more like co-developers in implementing code. Triagers were not
explicitly recognized as in Mozilla, but rather just granted
advanced privileges to the bug tracking systems. Major efforts of
triaging were dedicated to adding flags (e.g., affected Python ver-
sions) to bug reports and highlighting the ones that already had
patches but lacked developers’ participation.

“Patch is small and simple, can we move this forward?” (Issue
5729; comment 1; commenter/triager; active contributor; Python)

Aside from those social mechanisms to harness the community
contributions of bug reporting, the designs of bug tracking systems
are also tailored to address the differences in bug reporting. The
most evident different design was the flags the two communities
used to categorize open bugs. While Roundup simply labeled the
status of all unresolved issues as open, Bugzilla divided open bugs
into 4 types, unconfirmed, new, assigned, and reopened. The status of
unconfirmed provides triagers with easy access to the group of bug
reports that need their care. Python developers can use the key-
word needs review to highlight the readiness of a patch.

Summary: The different peer review practices begin from bug
reporting activities, in which Mozilla reporters mostly describe
symptoms whereas a significant number of Python reporters
implement code solutions. To help reporters submit quality
reports, Mozilla contributors often suggest the types of informa-
tion that is critical to bug description, while Python contributors
offer guidelines for coding. Triaging and its supporting technical
infrastructure also have different focuses in response to the differ-
ent characteristics of bug reports. Mozilla emphasizes confirmation
of a bug, whereas Python examines readiness of a patch.

4.2. Design decision: Individual vs. collective decision-making

Another remarkable difference between Mozilla and Python
arises when they have to make decisions on design-related issues,
either the appropriateness of requested features for project agenda
or the effectiveness of proposed approaches for patch design.
Although Python has a BDFL who gives a final say over technical
disputes, he only participated in a small number of discussions,
contributing to 27 bug discussions (1.46%; n=1850) and creating

3 bug reports (0.16%; n = 1850). Consequently, decisions regarding
the majority of bugs rely on other core developers’ judgment.
Participants have to make significant and quality contributions to
the community in order to become candidates of core developers,
which is a common norm (i.e., meritocracy) among OSS projects.

For a specific bug, Mozilla authorizes its affected module’s owner
to decide whether a change is appropriate for the module, especially
when only one module will be affected. For instance, a Firefox repor-
ter criticized that “[flavicons don’t work unless using ‘Remember’
privacy setting”. Two core members were inclined to set the bug
as wont fix, but the code owner decided to accept the request.

“... under the logic that this is a violation of your privacy settings
because you're telling the browser not to save your history, creating
a bookmark at all is in violation of the privacy settings under the
same rationale.” (Bug 502787; comment 5; reporter; peripheral
participant; Mozilla)

“I'll leave this decision up to the module owner then..” (Bug
502787; comment 6; commenter; core developer; Mozilla)

“I agree with the reporter. If the user asks for a bookmark, we
should store it’s favicon, regardless of the history setting.” (Bug
502787; comment 7; commenter; module owner; Mozilla)

Sometimes other Mozilla contributors (e.g., end-users) criticize
this way of making decisions, and even emotional conflicts arise.
These contributors feel that they have a stake in the software
design, but they are excluded from the decision-making process
and their opinions are unappreciated. For instance, a Firefox core
developer decided to remove the “Properties” context menu item
though several users argued that this item had been useful to
them. Many Firefox users complained, but all the core developers
participating in the discussion refused to reverse the decision.

“Sometimes the democratic system works. Sometimes a group with
a very closed perspective hijack it. Congrats on making [Firefox] a
laughing stock of a browser.” (Bug 513147; comment 70; com-
menter; peripheral participant; Mozilla)

“Mozilla is a meritocracy, and as such, the module owner/peers
have final say over decisions concerning the codebase.” (Bug
513147; comment 79; commenter; core developer; Mozilla)

Different from individual decision-making, Python mostly
approaches decisions collectively for controversial issues. It gath-
ers feedback and judgment from core developers who are inter-
ested in the issue through informal voting. The voting
emphasizes the value of providing rationale together with voting
numbers. It does not have “a binding force” [47], but agreement
often emerges from argumentation—either some parties are per-
suaded by the rest, or all the parties reach a middle ground.
Otherwise, the majority wins. Developers often prefer to take such
long discussions and voting outside the bug tracking system, such
as at mailing lists. In one Python bug report regarding whether to
maintain both the original Python implementation of the 10 file
and a new C version, two developer commenters could not reach
an agreement. They directed the issue onto the Python-dev mailing
list for core developers: 7 developers argued for maintaining both
versions, while 3 felt neutral and 2 supported to drop the old
Python version. Ultimately, they followed the majority’s opinion.

“I think we should just drop the Python implementations. There’s
no point in trying to keep two implementations around.” (Issue
4565; comment 11; patch author; core developer; Python)

“...+1 from me for keeping the pure Python version around for the
benefit of other VMs as well as a reference implementation.” (a
message from the email thread with the subject “[Python-Dev] 10
implementation: in C and Python?”; core developer).

“It seems the decision of Python-dev is to keep both implementa-
tions. We'll stuff the python one in _pyio and rewrite the tests to

http://support.mozilla.com/en-US/kb/Safe+Mode
http://support.mozilla.com/en-US/kb/Managing+Profiles
http://support.mozilla.com/en-US/kb/Managing+Profiles

8 J. Wang et al./Information and Software Technology 67 (2015) 1-12

test both.“(Issue 4565; comment 21; patch author; core developer;

Python)

On the contrary to Mozilla, Python developers attempt to avoid
individual influences, especially when the underlying reasons are
not well articulated. The example below shows that after a core
developer closed an issue report and set it as rejected, other devel-
opers criticized such acts and eventually had the issue reopened
and reconsidered.

“what do you mean by ‘too trivial’ ?

I don’t understand why this is now suddenly rejected. Raymond,
Guido, and other people have + 1 this on python-ideas.
http://mail. python.org/pipermail/python-ideas/2009-May/004871.
html

People have worked on a patch, so I think this is unfair to close it
now without more explanations, and just say that ‘we agreed at
EP'...” (Issue 6095; comment 10; commenter; core developer;

Python)

Voting does not happen every time disagreement arises in
Python. Instead, if the developers currently involved in a bug dis-
cussion at the bug tracking system do not consider the issue critical
enough to invite broader participation from the community, they
are prone to reaching a middle ground or even compromising. In
the following excerpt, two core developers argued that a singleton
was not a good data structure to implement the patch. Another
core developer disagreed and proposed an alternative solution that
both sides could accept.

“I also agree with [core developer 1] that a singleton looks rather
unnecessary...” (Issue 5094; comment 18; commenter; core devel-
oper; Python)

“I still don’t understand your aversion to singletons and you did not
address any of the advantages that I listed in my previous com-
ment. I don’t think singletons are foreign to Python: after all we
write None rather than NoneType(). We can reach a middle ground
by ... This will address most of the issues that I raised and
utc = datetime.UTC() is simple enough to write as long as you don’t
have to worry about sharing utc instance between modules.” (Issue
5094; comment 19; commenter; core developer; Python)

The technical designs for decision making also vary between
Mozilla and Python. Although Mozilla values individual decisions,
Bugzilla has implemented a field in individual bug reports that
allows people to add their votes. The total number of votes a bug
report receives is defined as a bug’s importance. Anyone can create
a Bugzilla account and then can vote if s/he thinks the bug should
be fixed. Despite the affordance of weighing in on deciding a bug’s
legitimacy, the module owner still can ignore the votes if s/he has
different opinions. For example, an end-user perceived himself
powered to influence the decision on a feature. However, the core
developers considered this misinterpretation of the affordance.

“Bugzilla works with an element of voting on the issue by it’'s mem-
bers, correct? Is that not a democratic element to software develop-
ment?” (Bug 513147; comment 78; commenter; peripheral
participant; Mozilla)

“Nope, there’s no “voting” involved at all. Mozilla is a meritocracy,
and as such, the module owner/peers have final say over decisions
concerning the codebase. .. If you're referring to the “voting” fea-
ture supported in Bugzilla, votes for bugs are almost always
ignored and mean pretty much nothing” (Bug 513147; comment
79; commenter; core developer; Mozilla).

Oppositely, Python does not provide any affordances for its vot-
ing process despite the role of voting in facilitating its
decision-making. Participants embed their votes (i.e., +1, 0, —1)

in narrative messages at either the bug tracking system or mailing
lists, as earlier quotes of this subsection shows. Additionally, votes
are not explicitly calculated but only estimated.

Summary: The peer review practices continue to differ when
communities have to decide bug legitimacy and patch design
approaches. Mozilla empowers module owners and peers to make
the decision when controversy arises, while Python relies on the
collective decision from all its core developers through informal
voting. With respect to technical support, Bugzilla enables every
user to vote but the voting results do not have much impact on
the final decision. In contrast, neither Roundup nor Python mailing
lists provide any explicit voting features.

4.3. Patch development and review: Designated vs. voluntary
responsibilities

The variances of division of labor between Mozilla and Python
emerge during the collaboration on developing and reviewing
patches. Specifically, the two communities differ in two aspects:
one is how they divide responsibilities among patch reviewers;
and the other is how participants play the roles of the patch author
and the patch reviewer for a bug. As the complexity and the variety
of work activities in large-scale OSS communities increase, the
responsibilities are defined in an increasingly articulated way.
For instance, both Mozilla and Python have non-profit organiza-
tions, in which their members fill various positions supporting pro-
duct development and community evolvement.

An important work responsibility for the OSS peer review pro-
cess is evaluating patches, which is a required duty for relevant
module owners or peers in Mozilla but not to any specific core
developer in Python. Mozilla patch authors have to explicitly
request the designated reviewers (usually two or three for an indi-
vidual module) for assessment (i.e., the affected module’s owner or
peers) in order to integrate their patches into the code repository.
Any other participants can provide a review but cannot substitute
the owner or peers to approve any changes. Some bugs require
more than one patch reviewer when the solutions involve special
expertise, such as Ul design and localization. These experts are also
comprised of a very small number of core developers (usually only
1). Upon submitting a patch, its author needs to set the review flag
in Bugzilla as “review?” with a reviewer’s email address, which
will alert the reviewer by email if his/her local notification setting
is enabled. The patch review process cannot proceed without the
designated reviewers’ participation. Reviewers use “r=" in their
comments and set the flag “review +” along with the uploaded
patch to indicate that a patch passes review as the following quote
illustrates.

“reviewed on IRC and manually tested working, r=me.” (Bug
515463; comment 14; patch reviewer; core developer; Mozilla)

In contrast to Mozilla’s strictly defined patch review responsi-
bilities, Python does not specify owners for each module and
allows any core developer to evaluate patches voluntarily and
accept code changes. Patch authors in Python rarely explicitly
asked for a certain reviewer but only leveraged the bug tracking
system or mailing lists to highlight the need of review. Such
vaguely divided responsibilities do not ensure someone is
obliged to review patches. Therefore, sometimes it may inhibit
the progress of the peer review process. The episode below illus-
trates a patch author complaining about the lack of response
toward his patch and attributed it to the absence of a module
owner.

“I don’t understand why this is so difficult to review...” (Issue
5949; comment 10; patch author; peripheral participant; Python)

http://mail.python.org/pipermail/python-ideas/2009-May/004871.html
http://mail.python.org/pipermail/python-ideas/2009-May/004871.html

J. Wang et al./ Information and Software Technology 67 (2015) 1-12 9

“Rest assured it has little to do with the difficultly of reviewing it.
Rather we are all volunteers.” (Issue 5949; comment 11; com-
menter; core developer; Python)

“. .. Tunderstand that we are all volunteers here. My frustration in
the lack of a de facto owner of the imaplib module and not with you
personally or any other committer for that matter.” (Issue 5949;
comment 12; patch author; peripheral participant; Python)

Another difference lies in the boundary between the role of
patch author and that of patch reviewer, even though neither the
two communities enforce such boundaries. In Mozilla, patch
reviewers usually only gave comments, either questioning the
overall design of patches or suggesting specific code changes line
by line and letting the original patch author modify the patches.
In the following example, the reviewer pointed out a flaw of the
patch design and suggested the direction of modification. The
patch author then indicated his lack of knowledge to achieve this
in the way the reviewer wanted and asked for further help from
the reviewer. Eventually the author did not update his patch, nor
did the reviewer.

“I disagree on the 110n part here, at least for the source of it. The
plugin should read a plain text file from a known good location,
and that text file needs to be create by the repackaging process
out of one of our known mozilla 110n file formats.” (Bug 524338;
comment 8; patch reviewer; core developer; Mozilla)

“Can you point me at an example of such a file (or instructions on
how to integrate such a file into the 110n build system) so I can
switch the code to using it? I'm not familiar at all with the
Mozilla 110n repackaging process.” (Bug 524338; comment 9;
patch author; peripheral participant; Mozilla)

In contrast, when reviewing patches in Python, developers often
directly modified the patches, turning themselves into patch
authors. They left summaries as comments in the bug reports
when the changes were minor. Other times when they did not
agree with the design, they created a new patch to implement their
own approach. Among all the bugs that went through patch review
and eventually got fixed or accepted, 31.70% were the cases in
which patch reviewers became patch authors (n = 388). Such cases
only occurred 8 times in Mozilla. The illustration below shows that
a patch reviewer rewrote the patch and elaborated why his
approach was better after the original patch author misunderstood
his recommendation.

“ ..Idon’t think that’s relevant to the point I was attempting to
make ... I'm working on refactoring PyLong_AsScaledDouble and
PyLong_AsDouble to have them both use the same core code. This
would make PyLong_AsScaledDouble correctly rounded...” (Issue
5576; comment 3; patch reviewer; core developer; Python)

The communities both recognize patch authors’ contributions
but acknowledge in slightly different ways. Moreover, patch
reviewers can be easily traced in Mozilla but much less so in
Python. The version control system and the bug tracking system
in Mozilla both record the name/user ID of patch authors and patch
reviewers as metadata for each bug. The bug tracking system in
Python functions similarly in regard to archiving patch authors’
identities. However, given Python developers often have to commit
other contributors’ patches to the version control system and only
the committers’ names/user ID will be automatically captured,
they create additional documentations in the code base to
acknowledge the original authorship. Patch reviewers are not
explicitly specified in Python. Thus, their identities are not anno-
tated in either the bug tracking system or the version control
system.

Summary: In the activities of patch development and patch
review, core developers in Mozilla tend to not switch to the role

of patch authors when they review others’ patches, whereas
Python reviewers directly revise patches more frequently. The
responsibilities of patch review are specified and designated to
module owners and peers in Mozilla, while any core developers
can volunteer reviewing and approving patches. Additionally,
Mozilla captures the identities of patch authors and reviewers as
metadata in its bug tracking system and version control system.
Python acknowledges patch authors through documentation,
while has not provided a deliberate way to track patch reviewers.

4.4. Tool affordance and use: Articulation vs. minimalism

Aside from the different characteristics of the key activities con-
stituting the peer review process, Mozilla and Python are also dis-
tinct from each other in terms of the affordances of their
supporting technologies and the ways their contributors use these
tools. The primary supporting technology is bug tracking systems
for both projects, unlike many other small OSS projects that rely
on emails to achieve this purpose. The designs of Bugzilla are more
biased toward documentation and Mozilla contributors interact
with it in a relatively articulate way. In comparison, Roundup fea-
tures afford actions in the peer review process and Python devel-
opers use them in a very flexible fashion. We have described
some of the differences in the earlier subsections.

The essential support bug tracking systems provide is similar in
Mozilla and Python, including a summary of the key information
about bugs schematically (e.g., title, bug status, resolution, priority,
keywords, affected component, affected version, dependencies,
report creator and created time, last modification performer and
time, assignee, a list of people who have subscribed to the bug
report), a space for uploading patches, a space for discussion, and
a log of report change history.

One remarkable difference in the interfaces of bug tracking sys-
tems is the keywords defined for a bug. The keywords field holds
keywords pertaining to the categorization of a bug. Bugzilla main-
tains a very articulated list of keywords, whose length currently
has exceeded 500. For instance, keywords related to documenta-
tion already include dev-doc-complete, dev-doc-needed,
user-doc-complete, user-doc-needed, and doc-bug-filed. On the con-
trary, Python keeps a minimal list of keywords, which is as short
as 6 keywords. Easy (i.e., fixing the issue should not take longer
than a day for someone new to contributing to Python to solve),
needs review (i.e., the patch attached to the issue is in need of a
review), and patch (i.e., there is a patch attached to the issue) are
the straightforward ones calling for specific contributions. Bug
reports with these three keywords are also highlighted as search
shortcuts in Roundup interface.

Another distinction associates with the flags indicating the pro-
gress of peer review. As we discussed earlier, Bugzilla classifies
open bugs into 4 groups, unconfirmed, new, assigned, and reopened
to differentiate the voluminous incoming bug reports. Roundup
does not divide open issues; instead, it provides an extra field,
stage, to engage core developers in taking the peer review process
to the next phase. The flags for this field consist of unit test needed,
needs patch, patch review, commit review, and committed|rejected.

Although both Bugzilla and Roundup enable the flagging of bug
statuses and resolutions, Mozilla contributors follow the prede-
fined values and mapping in a very articulate way, whereas
Python participants tend to label them more loosely. Compared
to the consistent mapping between status and resolution in the
bug reports of Mozilla, the status of 16 bug reports in our Python
data set were flagged as open but had a resolution. Furthermore,
the stage field was not always used in Python: the stage was not
indicated in 1387 reports (74.97%; n=1850).

The informal use of bug tracking systems in Python may some-
times create ambiguities or difficulties in managing information.

10 J. Wang et al./Information and Software Technology 67 (2015) 1-12

For instance, the component field in Roundup provides a list of val-
ues that combine both platforms (e.g., Windows, Macintosh) and
modules (e.g., installation, library, tests), which are defined sepa-
rately in Bugzilla. Although this field allows multiple sections, par-
ticipants may only assign a single value. In the following episode, a
core developer of Python who was an expert of Macintosh found
himself almost having missed a relevant bug.

“I have two procedural questions: 1) Who should I contact to get
e-mail for all bugs that get tagged with the Macintosh component?
2) Please tag all mac-related bugs with the ‘Macintosh’ component,
that’s the one I most often check for new issues.” (Issue 6154; com-
ment 21; patch reviewer; core developer; Python)

Summary: As the primary technical infrastructure for peer
review, bug tracking systems are designed and used in a very artic-
ulated way in Mozilla, particularly values of the fields in a bug
report. In contrast, Python contributors appropriate the tracking
system to attract actions from the community with minimal
efforts.

5. Discussion

After reviewing publications on 0SS from multiple fields in the
past decade, Crowston et al. suggested “[f]uture research needs to
compare projects ... of varying types in order to advance our
understanding of FLOSS development” [11]. Our study is a step
toward this goal. Reflections on the classic role models, projects
that have established work practices, are well recognized, and keep
evolving, provide learning opportunities for other growing com-
munities. We examined the key activities of the OSS peer review
process and their supporting technology designs in two OSS pro-
jects targeting entirely different types of users and of different
sizes. Fig. 2 shows how our findings relate to each other.

Aside from the different types of software types and different
sizes of communities, Mozilla and Python also adopt different
types of software licenses. However, we did not observe any asso-
ciation between the differences of licenses and the variances of
peer review practices. Gamalielsson et al.’s study on the sustain-
ability of OSS projects and their forks indicated that a weak copy-
left license was preferred to alternative permissive licenses by a
sustainable fork’s contributors [17]. Given this findings only
derived from one project, whether one type of license has better
impacts on projects’ sustainability than another is not conclusive.
For example, Schweik [39] did not identify any relationship
between a project’s success and its license type from examining
a large number of OSS projects hosted at SourceForge. In our study,
Mozilla and Python use their self-defined licenses rather than any
existing ones. Mozilla’s Mozilla Public License (MPL) is partially
copyleft, while Python’s Python Software Foundation License
(PSFL) is permissive. We did not find that Mozilla’s participants
expressed or acted more likely to remain in the community or con-
tribute because the license is more “open” in the way Gamalielsson
and Lundell [17] implied in their article.

™ (
[Bug Reporting Design Decision|
J
A

T

Patch Development &
Review

r

3

()
Technology Affordance &
Use
. J

Fig. 2. Relationships between themes of the results.

The two projects serve as alternative designs for both organiz-
ing peer review and improving supporting tools. The two commu-
nities can learn from each other, while other younger 0SS
communities (e.g., projects at GitHub) can also adapt these prac-
tices to their own contexts. For example, “bootstrap” (https://
github.com/twitter/bootstrap) is similar to the Python community
in that it is a front-end framework for web development that
mostly involves software developers in bug reporting and fixing.
On the contrary, Mopidy (https://github.com/mopidy/mopidy), an
end-user application, draws many users to report usability issues
and bugs, and therefore, it is much more similar to the Mozilla
community. As these projects evolve and grow, it is likely that they
will encounter issues found in successful communities of similar
nature. They could adopt the lessons learned in our case studies
of successful open source projects in order to scale. Open source
forges, such as GitHub and Sourceforge, may also provide config-
urable designs accommodating these variations to support differ-
ent OSS projects. We discuss these implications in this section.

5.1. The emerging role of triagers

Bug reports in pure description or with code entail different
ways to categorize and prioritize them in order to tap the massive
incoming contributions. Mozilla and Python present two different
approaches. In an end-user dominated community like Mozilla,
confirming a report a real bug is probably the most critical task
for triaging. This helps screening out a large portion of reports that
describe problems evidently caused by other software or inappro-
priate system setting, or have already been reported, or lack infor-
mation to diagnose. In addition to use highly articulated reporting
schema to elicit information from reporters at bug submission,
providing resources about how to verify a bug is also a viable solu-
tion. In a tech-savvy developer dominated community like Python,
triaging should be more focused on suggesting the type of action in
need. For example, reports can be classified into the ones that are
easy to fix, need discussion, have patches missing test cases or doc-
umentation, or have patches ready for review. Such categorization
helps direct the attention of core developers and active developers.
This difference of triaging priority also complements the variance
of issue attribute modification reported in Xie et al.’s study [49].

As our results indicate, a group of active contributors who fre-
quently perform triaging emerged as the amount of triaging work
became paramount. These triagers have some technical expertise
and are capable of programming, but they rarely contribute code
and are largely focused on sorting bug reports. This group of tria-
gers is much larger and more visible in Mozilla, mediating the col-
laboration between end-users and core developers. In comparison,
triaging in Python has not yet become a separate role in the com-
munity. Core developers and active developers usually carry out
this task while they also frequently create or modify patches as
well. This difference may be due to the relatively smaller volume
of submitted reports compared to the group size of core develop-
ers. As reports from the periphery exceed the time resources devel-
opers can delegate to triaging, a specialized group of triagers
probably will emerge in Python. Recognizing the contributions of
triagers (e.g., Friends of the Tree in Mozilla), and even formalizing
the triaging role to give them an identity, which have not been
implemented in either the two communities and may suppress
their motivations in the long term.

5.2. Decision efficiency and feedback gathering

Getting agreement on a design issue from a large community
like Mozilla and Python is almost impossible. Thus, these two com-
munities both grant their core developers to make the call.
Although reaching a decision is important, gathering feedback

https://github.com/twitter/bootstrap
https://github.com/twitter/bootstrap
https://github.com/mopidy/mopidy

J. Wang et al./ Information and Software Technology 67 (2015) 1-12 11

from argumentation among people with diverse perspectives and
expertise is also beneficial. The two distinct rules and technical
affordances for decision-making in Mozilla and Python result in
different experiences of interacting with core developers. In
Mozilla, decision can be made efficiently because it only depends
on a very small number of members. Meanwhile, emotional con-
flicts are more likely to arise and constructive feedback may
become difficult to evoke. The affordance of voting provided by
the bug tracking system made these negative impacts even worse.
In contrast, the emphasis on rationale in Python mitigates such
conflicts. No direct affordance of vote counting may even reinforce
this emphasis.

5.3. Control and spontaneity

How to define responsibilities of core developers is challenging
for organizing patch review. For instance, with respect to patch
review, how many reviewers should be authorized to approve
patches? Mozilla and Python provide two extreme but opposing
options. Mozilla divides the review responsibilities at a very fine
level (e.g., that of modules and sub-modules), and only allows a
very small group (e.g., 1-4) of developers to approve patches for
a specific module. Such division reduces the need of coordination
and increases the chance of receiving responses to a patch.
However, too much reliance on a small group may also increase
the risk of no progress when none from the group is available. In
the Python community, everyone shares the responsibility, which
increases the bandwidth of reviewer resources but may also cause
redundancy or futility of efforts. Depending on the volume of
patches and availability of core developers, OSS communities can
employ strategies that balance between these two options.

In accordance to the different degrees of control at approving
patches, Mozilla and Python employed different technology
designs to enhance awareness of patch reviewers. Mozilla enables
patch authors to explicitly name specific reviewers through setting
flags on their patches, Python does not provide such affordances,
but rather its developers proactively look for patches to review.
These designs left issues that may need further investigation. For
instance, whether the request for patch reviewers should be fur-
ther constrained to a pre-defined list of developers and how patch
authors can identify the appropriate reviewer. For projects like
Python in which control is more ad hoc, powerful search that helps
developers find their interests would be a much more desired
feature.

5.4. Documentation and facilitation

The different characteristics of tool affordance and use in
Mozilla and Python reflect the differences in their peer review pro-
cesses. The very articulated design of Bugzilla can be partly attrib-
uted to the gap between end-users and developers in regard to
how they conceptualize software problems. Such articulation
enhances the documentation of the development process and
makes bug reports easy to retrieve in the future. However, it also
adds overhead to the peer review process and entails great main-
tenance efforts. Thus, it might be easier to adopt in projects where
developers are paid employees like Mozilla. In contrast, Python
developers are inclined to annotating bug reports only when they
want to engage actions or coordinate workflow. They also keep the
tags as few and straightforward as possible. Such flexibility reduces
the workload of developers, which saves them time to focus on
development work they are interested in. This may fit projects like
Python better, because developers are mostly volunteers who are
motivated intrinsically.

5.5. Limitations

Our current analysis is constrained by its case selection and
data sources. We chose Mozilla and Python because they both have
established peer review practices and differ at product types and
patch review policies; however, other OSS projects may exhibit dif-
ferences of additional dimensions when compared with these two
cases. Our investigation was focused on bug reports archived by
bug tracking systems, but the archived information may be incom-
plete due to the fact that collaboration in the peer review process
may involve the usage of other computer-mediated communica-
tion tools [1]. The first author observed a variety of practices other
than peer review in these two communities throughout data col-
lection and analysis helped mitigate this gap and allowed us to val-
idate our findings. Other OSS projects that heavily rely on mailing
lists to perform peer review may suggest different characteristics
of interactions.

Our study is not to explain or identify causal relationships but
to qualitatively contrast cases. Thus, it is less concerned with
threats to internal validity. For instance, the selection bias refers
to the effects introduced by individual/group differences. With
respect to external validity, we are focused on large OSS communi-
ties. Thus, we suspect that our findings would generalize to the
much smaller counterparts, like the projects that have one or
two core developers. These two cases were also shaped by their
historical trajectories: Mozilla Firefox was transformed from a pro-
prietary software product and developed by a group of developers,
whereas Python was created by Guido van Rossum, who remains
principal influence on the project. Such particularities may not be
directly transferred to other OSS projects that have a different evo-
lution path.

6. Conclusion

In this article, we contrasted peer review practices within two
large and distinct open source communities. In particular, we ana-
lyzed each of the key activities involved in the OSS peer review
process as well as their associated technology affordances and
uses. Our investigation provided some interesting findings. First,
the different bug reporting styles, description versus code, afford
different focuses of triaging on confirming a bug or highlighting
actions in need (particularly patch readiness). The role of triagers
also becomes more distinct as the volume of bug reports increases.
Second, making design decisions through individual judgment or
collective discussions demonstrate the tradeoffs of design efficiency
and feedback gathering. Technical affordance of voting has to
match the power distribution among participants in order to mit-
igate frustration, while also allows inclusive participation and
encourages rationale articulation. Third, the different granularity
in division of labor, well specified versus ad hoc configured responsi-
bilities, reflects the different degrees of heterogeneity of technical
expertise. To address the tradeoffs of control and spontaneity,
designs for enhancing developers’ awareness and search capacities
require further improvement. Finally, the variance in tool affor-
dance and use, articulation versus minimalism, present two differ-
ent ways of design thinking, which depend on the perception of
the role of technology in the work process. Articulation helps doc-
umentation and knowledge management, while minimalism facil-
itates collaborative efforts and reduces maintenance cost.

This article contributes alternative designs of social mecha-
nisms and technology infrastructure for OSS peer review practices.
It extends previous research that was primarily focused on com-
monalities across community contexts or a single community.
Although two cases can hardly generalize to all OSS projects, they
engage users at two sides of the spectrum of technical expertise.

12 J. Wang et al./Information and Software Technology 67 (2015) 1-12

Thus, other projects can adapt those designs according to their
positioning at the spectrum. This is not intended to prescribe prac-
tices that should or must be adopted by 0SS projects, but rather
provide learning resources for OSS projects, or even online commu-
nities in general, to cope with challenges of harnessing massive
peripheral contributions and coordinating efforts of core members.
Furthermore, we highlight the emerging role of triagers, which has
not received much research effort compared to the core and
peripheral participants in virtual communities. We hope our study
can foster future investigations on more diverse OSS models.

Acknowledgments

This work is supported by the US NSF (0943023). We thank our
partners, the Mozilla and Python organizations for sharing their
practices, and also all the reviewers of this article for their sugges-
tions that helped improve it.

References

[1] J. Aranda, G. Venolia, The secret life of bugs: going past the errors and
omissions in software repositories, in: Proc. ICSE 2009, ACM Press, 2009, pp.
298-308.

[2] P.M. Bach, R. DeLine, J.M. Carroll, Designers wanted: participation and the user
experience in open source software development, in: Proc. CHI 2009, ACM
Press, 2009, pp. 985-994.

[3] F. Barcellini, F. Detienne, J.M. Burkhardt, User and developer mediation in an
Open Source Software community: boundary spanning through cross
participation in online discussions, Int. J. Hum.—-Comput. Stud. 66 (7) (2008)
558-570.

[4] A. Barham, The impact of formal QA practices on FLOSS communities-the case
of Mozilla, in: Open Source Systems: Long-Term Sustainability, Springer, 2012,
pp. 262-267.

[5] D. Bertram, A. Voida, S. Greenberg, R. Walker, Communication, collaboration,
and bugs: the social nature of issue tracking in software engineering, in: Proc.
CSCW 2010, ACM Press, 2010, pp. 291-300.

[6] S.Breu, R. Premraj, J. Sillito, T. Zimmermann, Information needs in bug reports:
improving cooperation between developers and users, in: Proc. CSCW 2010,
ACM Press, 2010, pp. 301-310.

[7] A. Capiluppi, P. Lago, M. Morisio, Characteristics of open source projects, in:
Proceedings. Seventh European Conference on Software Maintenance And
Reengineering, 2003, IEEE, 2003, pp. 317-327.

[8] K. Crowston, H. Annabi, J. Howison, C. Masango, Effective work practices for
FLOSS development: a model and propositions, in: Proc. HICSS'05, IEEE, 2005,
pp. 197a.

[9] K. Crowston, B. Scozzi, Open source software projects as virtual organisations:
competency rallying for software development, IEEE Softw. 149 (1) (2002) 3-
17.

[10] K. Crowston, B. Scozzi, Bug fixing practices within free/libre open source
software development teams, J. Database Manage. 19 (2) (2008) 1-30.

[11] K. Crowston, K. Wei, J. Howison, A. Wiggins, Free/libre open source software
development: what we know and what we do not know, ACM Comput. Surv.
44 (2) (2012).

[12] L. Dabbish, C. Stuart, . Tsay, J. Herbsleb, Social coding in GitHub: transparency
and collaboration in an open software repository, in: Proc. CSCW 2012, ACM
Press, 2012, pp. 1277-1286.

[13] L. Dahlander, L. Frederiksen, The core and cosmopolitans: a relational view of
innovation in user communities, Organ. Sci. 23 (4) (2012) 988-1007.

[14] N. Ducheneaut, Socialization in an open source software community: a socio-
technical analysis, Comput. Supported Coop. Work (CSCW) 14 (4) (2005) 323-
368.

[15] K. Finley, Github Has Surpassed Sourceforge and Google Code in Popularity,
2011

[16] C. Francalanci, F. Merlo, Empirical analysis of the bug fixing process in open
source projects, Open Sour. Dev. Commun. Qual. (2008) 187-196.

[17] J. Gamalielsson, B. Lundell, Sustainability of open source software
communities beyond a fork: how and why has the LibreOffice project
evolved?,] Syst. Softw. 89 (2014) 128-145.

[18] R.A. Ghosh, R. Glott, B. Krieger, G. Robles, Free/Libre and Open Source
Software: Survey and Study, International Institute of Infonomics, University
of Maastricht and Berlecon Research GmbH, 2002.

[19] T.J. Halloran, W.L. Scherlis, High quality and open source software practices, in:
Proc. 2nd Workshop on Open Source Software Engineering, University College
Cork, Ireland, 2002.

[20] K. Hamasaki, R.G. Kula, N. Yoshida, A. Cruz, K. Fujiwara, H. lida, Who does what
during a code review? datasets of OSS peer review repositories, in: Proc.
MSR2013, IEEE Press, 2013, pp. 49-52.

[21] R. Heckman, K. Crowston, U.Y. Eseryel, J. Howison, E. Allen, Q. Li, Emergent
decision-making practices in free/libre open source software (FLOSS)
development teams, in: Open Source Development, Adoption and
Innovation, 2007, pp. 71-84.

[22] The Institute of Electrical and Electronics Engineers, IEEE Guide Standard for
Software Reviews IEEE Std 1028-1997, New York, 1999.

[23] S. Just, R. Premraj, T. Zimmermann, Towards the next generation of bug
tracking systems, in: Proc. VL/HCC 2008, IEEE, 2008, pp. 82-85.

[24] A. Ko, P. Chilana, How power users help and hinder open bug reporting, in:
Proc. CHI 2010, ACM Press, 2010, pp. 1665-1674.

[25] S. Koch, G. Schneider, Effort, co-operation and co-ordination in an open source
software project: GNOME, Inf. Syst. J. 12 (1) (2002) 27-42.

[26] P.B. de Laat, Governance of open source software: state of the art, J. Manage.
Governance 11 (2) (2007) 165-177.

[27] C. Lattemann, S. Stieglitz, Framework for governance in open source
communities, in: Proc. HICSS 2005, IEEE, 2005, pp. 192a.

[28] A. Mockus, T. Fielding,].D. Herbsleb, Two case studies of open source software
development: Apache and Mozilla, ACM Trans. Softw. Eng. Methodol. 11 (3)
(2002) 309-346.

[29] J.Y. Moon, L. Sproull, Essence of distributed work: the case of the Linux kernel,
First Monday 5 (11) (2000).

[30] M. Mukadam, C. Bird, P.C. Rigby, Gerrit software code review data from
android, in: Proc. MSR2013, IEEE, 2013, pp. 45-48.

[31] E.S. Raymond, The Cathedral and the Bazaar: Musings on Linux and Open
Source by an Accidental Revolutionary, O'Reilly, 2001.

[32] C.R. Reis, R.P. de Mattos Fortes, An overview of the software engineering
process and tools in the Mozilla project, in: Proc. Open Source Software
Development Workshop, 2002, pp. 155-175.

[33] P. Rigby, D. German, M. Storey, Open source software peer review practices: a
case study of the apache server, in: Proc. ICSE 2008, ACM Press, 2008, pp. 541-
550.

[34] P.C. Rigby, M.A. Storey, Understanding broadcast based peer review on open
source software projects, in: Proc. ICSE 2011, ACM Press, 2011, pp. 541-550.

[35] J.E. Robbins, Adopting OSS methods by adopting OSS tools, in: Proc. the ICSE
2nd Workshop on Open Source, 2002.

[36] F. Rullani, S. Haefliger, The periphery on stage: the intra-organizational
dynamics in online communities of creation, Res. Policy 42 (4) (2013) 941-
953.

[37] RJ. Sandusky, L. Gasser, Negotiation and the coordination of information and
activity in distributed software problem management, in: Proc. GROUP2005,
ACM Press, 2005, pp. 187-196.

[38] W. Scacchi, Understanding open source software evolution, Softw. Evol.
Feedback: Theory Pract. 9 (2006) 181-205.

[39] C.M. Schweik, Sustainability in open source software commons: lessons
learned from an empirical study of SourceForge projects, Technol. Innov.
Manage. Rev. 3 (1) (2013).

[40] M. Shaikh, T. Cornford, Version management tools: CVS to BK in the Linux
kernel, in: Proc. Taking Stock of the Bazaar: The 3rd Workshop on Open Source
Software Engineering, ICSE2003, 2003.

[41] A.C. Strauss,]. Corbin, Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory, Sage Publications Inc., 1998.

[42] M. Terry, M. Kay, B. Lafreniere, Perceptions and practices of usability in the
free/open source software (FoSS) community, in: Proc. CHI 2010, ACM Press,
2010, pp. 999-1008.

[43] M.B. Twidale, D.M. Nichols, Exploring usability discussions in open source
development, in: Proc. HICSS 2005, IEEE, 2005, pp. 198c.

[44] G.von Krogh, S. Spaeth, K.R. Lakhani, Community, joining, and specialization in
open source software innovation: a case study, Res. Policy 32 (7) (2003) 1217~
1241.

[45] J. Wang, J.M. Carroll, Behind Linus’s law: a preliminary analysis of open source
software peer review practices in Mozilla and Python, in: Proc. CTS 2011, IEEE,
2011, pp. 117-124.

[46] J. Wang, P.C. Shih, .M. Carroll, Revisiting Linus’s law: benefits and challenges
of open source software peer review, Int. J. Hum.-Comput. Stud. 77 (2015) 52—
65.

[47] B. Warsaw, PEP 10 - Voting Guidelines, 2007.

[48] K. Wiegers, Peer Reviews in Software: A Practical Guide, Addison-Wesley,
2001.

[49]]. Xie, M. Zhou, A. Mockus, Impact of triage: a study of Mozilla and gnome, in:
ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, 2013, IEEE, 2013, pp. 247-250.

[50] Y. Yamauchi, M. Yokozawa, T. Shinohara, T. Ishida, Collaboration with Lean
Media: how open-source software succeeds, in: Proc. CSCW 2000, ACM Press,
2000, pp. 329-338.

[51] X. Yang, R.G. Kula, C.C.A. Erika, N. Yoshida, K. Hamasaki, K. Fujiwara, H. lida,
Understanding OSS peer review roles in peer review social network (PeRSoN),
in: Proc. APSEC2012, IEEE, 2012, pp. 709-712.

[52] Y. Ye, K. Nakakoji, Y. Yamamoto, K. Kishida, The co-evolution of systems and
communities in free and open source software development, Free/Open Source
Softw. Develop. (2005) 59-82.

[53] RK. Yin, Case Study Research: Design and Methods, vol. 5, Sage, 2003.

http://refhub.elsevier.com/S0950-5849(15)00106-8/h0005
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0005
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0005
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0005
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0010
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0010
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0010
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0010
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0015
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0015
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0015
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0015
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0020
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0020
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0020
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0020
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0025
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0025
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0025
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0025
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0030
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0030
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0030
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0030
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0045
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0045
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0045
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0050
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0050
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0055
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0055
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0055
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0060
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0060
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0060
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0060
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0065
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0065
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0070
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0070
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0070
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0080
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0080
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0085
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0085
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0085
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0090
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0090
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0090
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0090
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0100
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0100
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0100
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0100
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0120
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0120
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0120
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0125
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0125
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0130
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0130
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0140
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0140
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0140
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0145
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0145
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0165
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0165
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0165
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0165
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0170
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0170
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0170
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0180
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0180
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0180
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0185
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0185
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0185
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0185
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0190
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0190
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0195
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0195
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0195
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0205
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0205
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0205
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0210
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0210
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0210
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0210
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0220
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0220
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0220
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0230
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0230
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0230
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0240
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0240
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0240
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0250
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0250
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0250
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0250
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0260
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0260
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0260
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0265
http://refhub.elsevier.com/S0950-5849(15)00106-8/h0265

	Comparative case studies of open source software peer review practices
	1 Introduction
	2 Related work
	2.1 Community-based open source software development
	2.2 Software peer review in open source
	2.3 Technology support for open source software peer review

	3 Methods
	3.1 Case selection and description
	3.2 Data collection and analysis

	4 Results
	4.1 Bug reporting: Description vs. code
	4.2 Design decision: Individual vs. collective decision-making
	4.3 Patch development and review: Designated vs. voluntary responsibilities
	4.4 Tool affordance and use: Articulation vs. minimalism

	5 Discussion
	5.1 The emerging role of triagers
	5.2 Decision efficiency and feedback gathering
	5.3 Control and spontaneity
	5.4 Documentation and facilitation
	5.5 Limitations

	6 Conclusion
	Acknowledgments
	References

