
Revisiting Linus’s law: Benefits and challenges of open source software
peer review

Jing Wang n, Patrick C. Shih, John M. Carroll
College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA 16802, United States

a r t i c l e i n f o

Article history:
Received 14 January 2014
Received in revised form
18 December 2014
Accepted 18 January 2015
Communicated by Francoise Detienne
Available online 28 January 2015

Keywords:
Online collaboration
Software peer review
Open source

a b s t r a c t

Open source projects leverage a large number of people to review products and improve code quality.
Differences among participants are inevitable and important to this collaborative review process—
participants with different expertise, experience, resources, and values approach the problems
differently, increasing the likelihood of finding more bugs and fixing the particularly difficult ones. To
understand the impacts of member differences on the open source software peer review process, we
examined bug reports of Mozilla Firefox. These analyses show that the various types of member
differences increase workload as well as frustration and conflicts. However, they facilitate situated
learning, problem characterization, design review, and boundary spanning. We discuss implications for
work performance and community engagement, and suggest several ways to leverage member
differences in the open source software peer review process.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

“Given enough eyeballs, all bugs are shallow” (Raymond, 2001).
Linus’s law highlights the power of open source software (OSS) peer
review. As a high-profile model of large-scale online collaboration,
OSS development often involves globally dispersed experts, mostly
volunteers, collaborating over the Internet to produce software with
source code freely available. Peer review is one of the core colla-
borative practices of OSS development: distributed participants
evaluate and test the released software products, and report any
problems they discovered or experienced; others jointly analyze and
identify software defects or deficiencies, and generate solutions for
repairing or improving the software products.

Large diverse communities are considered paramount to OSS
peer review processes. “More users find more bugs because adding
more users adds more different ways of stressing the program. […]
Each one approaches the task of bug characterization with
aslightly different perceptual set and analytical toolkit, a different
angle on the problem” (Raymond, 2001). Extensive studies on OSS
have shown the existence of other dimensions of member differ-
ences, such as heterogeneous motivations (Feller et al., 2005;
Roberts et al., 2006), different expertise in software engineering
and usability (Twidale and Nichols, 2005), and divergent perspec-
tives (Sandusky and Gasser, 2005). The advances of social media

provide opportunities for engaging an even larger audience in OSS
development, and these potential contributors are likely to differ
at even wider dimensions (Begel et al., 2010; Storey et al., 2010).
Thus, understanding the role of member differences in the
collaboration and social processes of OSS peer review, and parti-
cularly how it may be better leveraged is important for enhancing
the understanding of OSS and online large-scale collaboration.
However, little research has directly addressed diverse character-
istics of members; existing work is largely focused on differences
caused by roles (e.g., Daniel et al., 2013), distance (e.g., Cataldo
et al., 2006), or national cultures (e.g., Shachaf, 2008).

To enhance the understanding of the OSS peer review process, we
focus on the differences of participants and their impacts on the
process, building on our previous study that has identified and
characterized the common activities constituting the OSS peer
review process (Wang and Carroll, 2011). We are especially interested
in the less discernable or quantifiable attributes (e.g., informational
and value diversity) in the OSS development context, rather than
more readily observable ones (e.g., tenure within the site and the
community, roles, language) as other studies did. To unfold the
impacts of various types of differences, we conducted a case study of
OSS peer review processes in Mozilla Firefox, a high-profile OSS
project involving massive number of participants with a wide range
of attributes. We analyzed member interactions recorded in bug
reports, the central space for Mozilla’s peer review. Participants who
contributed to bug reports are valuable assets for OSS projects to
retain, as they are probably more motivated than the generic Firefox
users because using bug tracking systems to report, analyze, and fix
bugs require more efforts than simply using the browser.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ijhcs

Int. J. Human-Computer Studies

http://dx.doi.org/10.1016/j.ijhcs.2015.01.005
1071-5819/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: þ1 814 863 8856.
E-mail addresses: jzw143@ist.psu.edu (J. Wang), patshih@ist.psu.edu (P.C. Shih),

jmcarroll@psu.edu (J.M. Carroll).

Int. J. Human-Computer Studies 77 (2015) 52–65

www.sciencedirect.com/science/journal/10715819
www.elsevier.com/locate/ijhcs
http://dx.doi.org/10.1016/j.ijhcs.2015.01.005
http://dx.doi.org/10.1016/j.ijhcs.2015.01.005
http://dx.doi.org/10.1016/j.ijhcs.2015.01.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2015.01.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2015.01.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2015.01.005&domain=pdf
mailto:jzw143@ist.psu.edu
mailto:patshih@ist.psu.edu
mailto:jmcarroll@psu.edu
http://dx.doi.org/10.1016/j.ijhcs.2015.01.005


Our findings indicate that informational diversity and value
diversity result in both benefits and challenges to the work-related
processes of OSS peer review as well as the well-being of open
source communities. We disentangle the member differences that
are often confounded with the prevalent dichotomic view of core/
periphery and developer/user in current large-scale online colla-
boration literature. Such efforts create opportunities to understand
and support overlooked groups of community participants, includ-
ing triagers and co-developers. We also suggest implications for
designing socio-technical interventions to mitigate the negative
effects and augment the positive impacts of member differences.
Distinct from prior research aiming at converting peripheral parti-
cipation into active contributions, our design proposals offer an
alternative way to embrace, leverage, and support member differ-
ences in communities that thrive on diversity.

2. Related work

2.1. Open source software peer review

OSS peer review is widely believed to be remarkably benefiting
from a large community – “many eyeballs” – of members with
different perspectives (Raymond, 2001). In general, the OSS peer
review process begins with one submitting a bug report to the bug
tracking system—an application that helps developers keep track of
reported defects or deficiencies of source code, design, and docu-
ments. Others examine the defect causes and request additional
information to determine whether the bug should be fixed. Once a
solution is reached, they then commit a change set (mostly a patch) to
the current software product. Our earlier work (Wang and Carroll,
2011) has codified the process as consisting of four common activities,
including submission (i.e., bug reporting), identification, solution, and
evaluation. These activities were externalized and made available in
bug reports. They serve similar purposes as individual reviews, review
meetings, rework, and follow-up in traditional software review,
respectively, but fundamentally rely on web-based technologies. In
addition to bug tracking systems in which people record and
comment on bugs and issues, version control systems manage and
synchronize committed software changes, while communication tools
such as mailing lists and Internet Relay Chat (IRC) enable developers
to discuss bugs.

Most studies related to the OSS peer review process were
conducted from the software engineering perspective, deliberately
modeling the information needs in bug report quality (Bettenburg
et al., 2008a; Breu et al., 2010), inaccurate bug assignment (Jeong
et al., 2009), efficiency and effectiveness of patch review (Rigby
et al., 2008), and distribution of contributions in bug reporting and
fixing (Mockus et al., 2002). Rigby et al. articulated stakeholders’
involvement and their approaches for managing broadcast-based
patch review (Rigby and Storey, 2011; Rigby et al., 2008). They also
found that stakeholders interacted differently when discussing
technical issues and when discussing the project scope.

With respect to the nature of a collaborative practice, much
research effort related to OSS peer review has been devoted to
explaining the coordination mechanisms (Yamauchi et al., 2000;
Crowston and Scozzi, 2008; Sandusky and Gasser, 2005), negotiation
(Sandusky and Gasser, 2005), leadership and governance (Fielding,
1999; Moon and Sproull, 2000), and the role of bug tracking systems
(Bertram et al., 2010). Recent work by Ko and Chilana (2010) analyzed
the reports of Mozilla contributors who reported problems but were
never assigned problems to fix, indicating different competences of
members in reporting bugs. Wang et al.’s analysis (Wang and Carroll,
2011) also showed large volume of bug reports failed to identify real
bugs, increasing the cost of filtering them out. This study is to extend
current understanding of OSS peer review by focusing on member

differences of various attributes, particularly the impacts of these
differences on the ways members interact and collaborate during the
review process.

2.2. Diversity in collocated and distributed groups

Diversity is commonly defined as the differences of any attributes
among individuals. As a complex construct, it has been studied in
multiple disciplines, such as organizational behavior, sociology, and
psychology. A complete review of this large body of literature is
beyond the scope of this paper. However, regardless of variations
between typologies, diversity can be of the readily visible attributes
(e.g., gender, ethnicity, and age), of informational attributes (e.g.,
education, work experience, and knowledge), and of attitudes and
values (e.g., whether members agree onwhat is important within the
community and whether they have similar goals) (Van Knippenberg
and Schippers, 2007; Jehn et al., 1999; Williams and O’Reilly, 1998).
Diversity of an attribute can be further classified into three types—
separation, variety, and disparity (Harrison and Klein, 2007). Separa-
tion refers to the differences in (lateral) position or opinion among
members, primarily of value, belief, or attitude. Variety is the
categorical differences, often unique or distinctive information, while
disparity represents proportional differences along a continuum,
mostly of socially valued assets or resources held among members.
This conceptualization of diversity has important indication on the
need of varying measurement when different types of diversity are
being assessed.

Research on collaboration in collocated groups has a long history
of analyzing diversity of various dimensions. Reviews and meta-
analyses on this large volume of work suggested that the effects of
diversity is contingent on the context: diversity can affect work
processes, performance, and member identification in both positive
and negative ways, and effects of the same diversity dimension may
vary greatly across contexts (Harrison and Klein, 2007; Joshi and
Roh, 2009). For instance, diverse perspectives tend to benefit work
performance in short-term tasks, but these positive effects become
much less significant in longer-term teams, and conflicts start to
arise (Joshi and Roh, 2009). In general, a broad range of expertise
and knowledge can enhance problem solving, decision-making, and
even creativity and innovation, while differences of perspectives
and values can result in dysfunctional group processes, conflicts,
and poor performance (Milliken et al., 2003; Williams and O’Reilly,
1998; Van Knippenberg and Schippers, 2007). However, these
studies were largely conducted in collocated groups in organiza-
tions or laboratory experiments.

A few other researchers looked into diversity in virtual teams.
Shachaf (2008) explored the heterogeneity of national cultures of
members from ad hoc global virtual teams at a corporation. The
interviews showed such cultural diversity has positive influences
on decision-making and negative influences on communication.
Damian and Zowghi (2003) also focused on cultural diversity and
found that it increased team members’ difficulty in achieving
common understanding of software requirements. Several chap-
ters in Hinds and Kiesler (2002) discussed conflicts caused by
differences of organizational cultures and informational diversity.
However, such work still analyzed diversity in the settings in
which group or organizational boundaries were clearly defined.
There have been very few studies on volunteer-based large-scale
online communities, such as OSS projects and Wikipedia, and
therefore, they warrant additional examination.

Another theme of relevant research on virtual teams did not
specifically analyze diversity but differences that were caused by
distance, such as different information about remote contexts and
different time zones. Unlike diversity literature focused on personal
attributes, this body of work examined environmental factors,
suggesting that dispersed locations led to conflicts (Cramton,

J. Wang et al. / Int. J. Human-Computer Studies 77 (2015) 52–65 53



2001), communication and coordination (Herbsleb and Mockus,
2003; Cataldo et al., 2006; Olson and Olson, 2000), as well as unin-
formed decisions (Grinter et al., 1999). Our goal is to investigate
member differences beyond the language and location dimensions,
in order to understand how other aspects of variations may influ-
ence collaboration.

2.3. Member differences in large-scale online peer production

A crucial advantage of online peer production lies in its open-
ness, engaging large-scale communities beyond a few experts.
Members in such communities are likely to differ in various ways.
Limited research has been done to articulate these variances and
understand the challenges and benefits they bear on. The relevant
studies fall into three major themes, core versus periphery, devel-
opers versus users, and other types of variances. We summarize
them in the following subsections, respectively.

2.3.1. Differences between core and periphery
A body of research on large-scale online peer production touching

onmember differences was focused on contrasting core and periphery.
One type of studies in this research theme modeled the structural
characteristics in OSS development collaboration. These efforts distin-
guished core developers from peripheral members and indicated the
relationship between project centrality and performance. Uzzi and his
collaborators (Uzzi, 1997; Uzzi et al., 2007; Guimera et al., 2005)
conceptualized social network structures of teams and their effects on
collaboration in the organizational settings. Subsequently, researchers
have applied social network analysis on collaboration among devel-
opers in OSS development. For example, Borgatti and Everett (2000)
proposed an analytical model for detecting core and peripheral
developers of OSS projects. Using a similar model, Tan et al. (2007)
reported that both direct and indirect ties positively influence the
productivity of teams, and the greater the cohesive ties that the team
members form in their social network the more productive they are in
OSS development. Adhering to this theme, Dahlander and Frederiksen
(2012) investigated how one’s position in the core/periphery structure
affects innovation. Their findings suggested that an inverted U-shaped
relationship between an individual’s position in the core/peripheral
structure and his/her innovation. In addition, spanning multiple
external boundaries remains a positive delineator for most people, but
is detrimental for the most core individuals. Crowston and Howison
(2006) reported the emergence of a hierarchical structure through
analyzing interactions around bug fixing of SourceForge projects. This
hierarchy incorporated an additional tier, co-developers who submit
patches, to the core/periphery dichotomy. They also found that the
level of centralization is negatively correlated with project size,
suggesting that larger projects become more modular. In general,
OSS development is a highly decentralized activity, and research has
found that there lacks a significant relationship between closeness and
betweenness centralities of the project teams and their success in the
majority of the OSS projects (Singh, 2010).

Aside from the effort of analyzing network structure, some
other scholars characterized the distinct activities core and per-
iphery performed in OSS development. In their widely-cited
article, Mockus et al. (2002) reported the differences of contribu-
tion types and scale between core developers and the other
contributors: a group larger than the core by about an order of
magnitude contributed to defect fixing, and a group larger by
another order of magnitude contributed to defect reporting.
Rullani and Haefliger (2013) described the roles of core developers
and those in the peripheries, and how the propagation of such
standards is communicated through non-material artifacts such as
code and virtual discussions as a social practice.

Our study disentangles the member differences confounded with
status in the core/periphery structure, unfolding disparity of knowl-
edge and separation of values (Harrison and Klein, 2007). One type
of the disparity regards technical expertise, namely knowledge of
programming and the code repository. Another type of disparity
relates to process knowledge, which pertains to a specific commu-
nity, such as the awareness of community norms, practices, and
agenda. Core developers dominate the higher end of both spec-
trums, while the peripheral members spread over the other side.
The separation of values is instantiated when core and peripheral
members hold opposing beliefs of what is important to the software
application. Conceiving member differences in these more nuanced
ways beyond the dichotomic view of core and periphery create
opportunities to further segment the participants involved in OSS
peer review and to provide better support for their distinct needs.
For instance, a group of people could fall at the higher end of process
knowledge but lower end of technical expertise, like triagers. They
have no intention to convert to core developers, but contribute
significantly as coordinators and gatekeepers.

2.3.2. Differences between developers and users
Another group of researchers described OSS communities

comprised of developers and users. Unlike the core/periphery
structure that is commonly observed in other types of online
communities, this developer/user distinction exclusively fits soft-
ware development domain. Human–computer interaction scholars
particularly emphasized the importance of users. Through exam-
ining usability discussions in OSS communities, they argued that
end-users and usability experts could provide special expertise
and knowledge the other developers do not have (Bach et al.,
2009; Twidale and Nichols, 2005). In addition, Ko and Chilana
(2010) studied user contributions to OSS bug reporting, suggesting
that the valuable bug reports primarily came from a comparably
small group of experienced and frequent reporters.

A few studies considered developers and users two different
project roles. Barcellini et al. (2008) characterized how user-proposed
designs were mediated between the user community and the deve-
loper community, identifying the emerging role of boundary span-
ners who participated in parallel in both communities and coordi-
nated the discussions. A recent study analyzing 337 SourceForge OSS
projects showed that variety diversity of project roles was positively
associated with user participation (Daniel et al., 2013). Specifically,
the number of users participating in a project is higher when mem-
bers are more equally spread across developers and active users.

In line with thinking of member differences as variety, our work
adds the diversity attribute of specific information about an issue to
the attributes of technical expertise and project roles. For example,
when describing a crash, members, regardless of being a developer
or a user, probably can contribute information about different para-
meters of the system environment in which the crash occurs.
Moreover, while the OSS peer review process is different from
feature discussions and coding and development reported in
Barcellini et al. (2008)’s article, we observed that a group of active
volunteers, formally bug triagers, serve a similar role for bridging
user and developer sub-communities to resolve bugs. We discuss
the design recommendations to support this role, which contributes
to the literature on role emerging design.

2.3.3. Differences of other attributes
A relevant group of studies provided indirect evidence of the

existence of member differences; however, none was focused on
elaborating these differences, particularly how the varying types of
member differences impact the collaborative process. Early sur-
veys on OSS revealed the variant motivations among individual
participants. They subsumed utilitarian reasons (own needs for

J. Wang et al. / Int. J. Human-Computer Studies 77 (2015) 52–6554



software functions), joy and challenge, and reputation (Feller et al.,
2005; Roberts et al., 2006). Work on negotiation and conflicts also
hinted at different opinions participants might hold with respect
to a wide range of issues. Sandusky and Gasser (2005) examined
instances of negotiations in OSS bug finding and fixing processes
in depth, showing how negotiation in different contexts affect the
sense-making and problem-solving processes with 3 concrete
examples. Research on Wikipedia, another high-profile example
of large-scale online peer production, was mostly focused on
characteristics of conflicts and negotiation among article authors.
For instance, using history flow visualizations, Viégas et al. (2004)
identified action patterns of users who had competing perspec-
tives over article editing. Kittur et al. (2007) also used visualiza-
tions to model what properties of articles highly likely led to
conflicts as well as cluster users into opinion groups.

The more direct efforts of analyzing member diversity centered
on a few personal attributes that are relative easy to quantify, such
as tenure, language, and activity characteristics. Besides project
roles, Daniel et al. (2013)’s study assessed the effects of diversity of
tenure, languages and activity levels on user participation in
addition to variety of project roles. The results showed that tenure
diversity (i.e., variance of the amount of time since one’s registra-
tion at SourceForge) positively affect user participation, whereas
variations in participants’ activity levels was negative associated.
The authors did not find any significant impact of language
diversity on user participation. In the context of Wikipedia, Chen
et al. found that increased tenure diversity (i.e., variance of the
amount of time since one’s first edit at Wikipedia) and interest
diversity (i.e., variety of one’s edits in different topics) increases
group productivity and decreases member withdrawal, but after a
point increased tenure diversity will increase member withdrawal
(Chen et al., 2010).

Our investigation complements the prior studies with a focus
on member differences of other types, particularly informational
diversity and value diversity, which are relatively difficult to gauge
in a quantitative way. Analysis on these dimensions also enhances
the understanding of those more quantifiable diversity types, like
tenure. For instance, member differences with respect to knowl-
edge about the community relate to tenure diversity. We found
these knowledge differences may increase workload of developers
but create opportunities of situated learning for relatively inexper-
ienced participants.

3. Methods

3.1. Case selection and description

To address the richness and complexity of the differences of
massive participants in open source, we conducted a case study of
Mozilla, a large and well-recognized OSS community. We focused
our analysis on its core project, Firefox, expecting its end-user
orientation would provide substantial instances of member differ-
ences, such as different expertise and experience.

The Mozilla community consists of both employees from Mozilla
Foundation and Mozilla Corporation and volunteers. Core developers,
mostly employees, are the ones who contribute significantly to the
project. They are divided by a variety of different roles, including
module owners, module peers, super reviewers, security group
members, quality assurance members, and support team members.
Each individual has to maintain and facilitate the evolvement of his or
her specific areas. For example, Firefox had a sub-module Session
Restore, which was supported by one sub-module owner and three
peers. Some other developers also actively contribute to the project,
but they are not affiliated to any of the organizations of Mozilla. Super
reviewers assess significant architectural refactoring, any change to

any API or pseudo-API, and all changes that affect how code modules
interact. Peripheral members rarely participate in developing the
software. They are comprised of end-users, web developers who
design extensions or other applications on top of Mozilla’s technology,
network administrators, third-party developers, and developers from
competitor products.

The peer review process in Mozilla follows a strict review-then-
commit fashion. Any changes (e.g., patches) to a module or sub-
module had to be reviewed by its owner or peers. Similar to other
OSS projects, Mozilla’s peer review involves a wide range of work
and communication tools, including version control systems (i.e.,
Mercurial), bug tracking systems (i.e., Bugzilla), IRC, mailing lists
and wikis. The bug tracking system is the primary space for peer
review in Mozilla, unlike some other projects mainly relying on
mailing lists for this purpose.

3.2. Data collection and sampling

Bug reports archived in Bugzilla – the bug tracking system
Mozilla primarily uses for issue reporting, analyzing, and fixing –

served as our major data source. Although our analysis focused on
data from Bugzilla, our interpretation of those data was also
informed by informal conversations with active contributors in
the peer review process, examination of the design of Bugzilla, and
relevant work artifacts that were shared publicly. These artifacts
included 41 weekly meeting notes, 22 web documents describing
work procedures and member roles, and 6 blog posts from
individual members discussing Mozilla’s peer review processes.

We retrieved bug reports created between two stable releases
of Firefox from Bugzilla. This sampling strategy was intended to
capture the possible behavioral changes near releases (Francalanci
and Merlo, 2008). The retrieval was performed on July 28, 2010. It
includes 7322 reports filed between the releases of Firefox 3.5 final
(June 30, 2009) and 3.6 final (Jan 21, 2010). Additionally, we
examined emails, blogs, wikis, documents and bug reports that
were mentioned or given URLs in the bug reports we retrieved.

We used email addresses to identify contributors in Mozilla’s
peer review process. Core developers were defined as the ones
listed on Mozilla’s websites as module and sub-module owners
and peers, Firefox development team members, super reviewers,
security group members and members with additional security
access, quality assurance team lead, and platform engineers during
the time between Firefox 3.5 and Firefox 3.6 releases. 176 devel-
opers were identified in this category. Crowston and Scozzi (2002)
suggested that it may be more useful to define core developers
based on the amount of their actual contributions rather than their
job titles, but our approach may better differentiate the values and
knowledge of core developers from other volunteers.

Overall, the 7322 bug reports in our data collection were
created by 5418 unique reporters. The number of bug reports
created per reporter ranged from 1 to 82, with the median of
1 report per reporter. 1286 additional contributors participated by
commenting in the discussion space of the bug reports. The
number of bug reports contributed per contributor varied between
1 and 990, with the median of 1 report per contributor. Each bug
report on average involved 2 Mozilla members in the discussion
(median¼2; skewness¼6.765). It suggests that the peer review
process was often a collaborative effort once a bug report was
submitted, in which member differences are likely to surface.

To accommodate the possible variations of work processes and
social interactions across bug reports, we performed stratified
sampling with respect to bug status and resolutions. In Bugzilla,
open bug reports had 4 types of status, unconfirmed, new, assigned,
and reopened. Unconfirmed bug reports were bugs that had recently
been added to the bug tracking system but not been validated to be
true by anyone. In contrast, the other 3 types of open bug reports

J. Wang et al. / Int. J. Human-Computer Studies 77 (2015) 52–65 55



were all confirmed at least by someone, even though their validity
might still be subject to others’ judgment. Closed bug reports had
6 types of resolutions, fixed, duplicate, invalid, incomplete, work-
sforme, and wontfix. Tables 1 and 2 summarize the distribution of
the status of open bug reports and the resolutions of closed bug
reports, respectively.

For each of the 10 types of bug status and resolutions, we
sampled 10% of them, which returned 732 bug reports in total. The
sample size was just an initial estimation for starting our qualita-
tive analysis, allowing us to perform in-depth examination instead
of being overwhelmed by voluminous texts as well as to reach
saturation. It eventually turned out to be a satisfactory estimation.
For each type, we first intentionally selected the bug reports with
number of comments at the 98th percentile in order to observe
fairly complex social dynamics; then for the rest of the sample we
randomly chose reports with fewer comments. All bug reports in
Mozilla were created by a human reporter; they included bugs
detected by automate tests, which were the cases for 70 bug
reports in our retrieved data set and 21 sampled for the qualitative
analysis. Thus, we treated all the bug reports the same when
sampling them. Each bug report had its unique ID and often
consisted of multiple comments. In the discussion space of each
bug report, the first comment was labeled “description”, which
was generated by the bug reporter to describe the issue. All the
other comments were indexed in order starting from 1. When
quoting discourses in the next section, we use the format (bug ID;
comment number; contributor type).

3.3. Data analysis

We carried out our qualitative analysis through three phases over
the 732 bug reports with 8484 comments from 2742 contributors.
First, the first and the second authors randomly selected 50 bug
reports and read them separately. They discussed their observations
and established shared understanding of the peer review process in
Mozilla. Then during the second phase, the first author inductively
coded the 732 bug reports, iteratively generated 628 codes occurring
a total of 1623 times, and discussed and consolidated them with the
other two authors during their weekly meetings. The frequency of
occurrences we counted was on units that a code referred to. A unit
was a complete episode demonstrating the impacts of member
diversity on the OSS peer review process. It could be part of a

comment. It could also span several comments, because participants
sometimes had to comment on each other to clarify or elaborate
their points in our study context. For example, for one episode we
coded as “repeating how to avoid invalid bug reports” included two
comments from the bug reporter and an active contributor, respec-
tively. The reporter asked what information should be reported, and
the response comment provided links to documented instructions.
When one comment was divided into several units for different
codes, we only assigned each unit a single code that best described
the dynamics the unit demonstrated. Finally, 15 groups of codes that
were pertinent to impacts of member differences and occurred the
most frequently and deemed the most relevant to member differ-
ences were selected. Overall, the 15 groups of codes occurred 424
times accounting for 26.12% of total occurrences. These codes and
themes are exclusive ones because of the way we analyzed the data.
Therefore, none of the units were counted more than once for
different codes. Then the authors integrated them into 6 themes.
Table 3 summarizes the 6 themes with their definitions and 15
groups of sub-level codes with the number of their occurrences. We
further describe each theme in Section 4, in which the quotes appear
in the same order as the sub-level codes listed in Table 3.

We identified the existence of member differences and their
various types through interpreting participants’ discourses in the
peer review process. The interpretationwas inductive in the way that
we did not bound it to a specific scheme but rather kept open to any
unique information or different value statement emerged. Inferences
generated during this process were subsequently consolidated with
the guidance from the work of Jehn et al. (informational diversity and
value diversity in particular) and Harrison and Klein (2007), Jehn
et al. (1999). Adapting from their definitions of different types of
diversity, we summarize the kinds of diversity emerged from our
analysis in Table 4. For example, an episode in which a commenter
stated he could not program and another commenter indicated
to take over and submitted with a patch would be identified as
disparity of proficiency in software engineering.

4. Results

Our qualitative analysis converged onto six major themes,
unfolding the impacts of member differences on OSS peer review
with respect to work performance and community engagement.
These impacts indicate both challenges and benefits for OSS
communities: challenges include increased workload and frustra-
tion and conflicts, while benefits range from situated learning,
problem characterization, design review, to boundary spanning.
They are associated with disparity and variety of expertise,
information and resources as well as separation of values and
beliefs among members. We describe these associations individu-
ally in the following subsections.

4.1. Challenges

4.1.1. Increased workload associated with informational diversity
Much workload of the peer review participants in Mozilla fell

onto screening the large number of “non-real” bugs as Table 2
suggests. Our qualitative examination found that these bugs were
largely associated with participants’ informational diversity with
respect to levels of technical expertise and experience with the
standard software review practices and community norms. In our
retrieved bug reports, nearly half (n¼3406; 46.51%) lacked atten-
tion or actions (i.e., open bug reports) to move forward in the peer
review process. On the contrary, the “non-real” bugs had already
cost a significant amount of participants’ efforts (n¼3418; 46.68%).
These bugs constituted 87.28% of the closed bug reports, including
the redundant reports (duplicate), issues caused by reasons other

Table 1
Distribution of the status of open bug reports.

Status Number of bugs % Of open bugs (%) % Of all bugs (%)

Unconfirmed 2680 78.68 36.60
New 676 19.85 9.23
Assigned 39 1.15 0.53
Reopened 11 0.32 0.15

Total 3406 100 46.51

Table 2
Distribution of the resolutions of closed bug reports.

Resolution Number of bugs % Of closed bugs (%) % Of all bugs (%)

Fixed 498 12.72 6.80
Duplicate 1346 34.37 18.38
Invalid 937 23.93 12.80
Worksforme 514 13.13 7.02
Incomplete 489 12.49 6.68
Wontfix 132 3.37 1.80

Total 3916 100 53.49

J. Wang et al. / Int. J. Human-Computer Studies 77 (2015) 52–6556



than Firefox (invalid), problems that cannot be reproduced by
anyone other than the reporter or identified in the code (work-
sforme), vaguely described bugs (incomplete), and requests that
will not be fixed (wontfix).

As the dominant of the “non-real” bugs, duplicate bug reports
were generated when disparity of technical expertise among
reporters existed. Sometimes the same problem can cause multi-
ple symptoms, as Bettenburg et al. (2008b) also suggested in their
analysis. Participants differ at their capabilities of identifying the
cause and drawing connections between their own problems and
existing bug reports. For example, a reporter could not figure out
that his browser freeze was due to large numbers of checkboxes
on the web pages as shown in the following quotes (Bug 506553).
In contrast, another commenter pointed that out and was able to
identify it as a duplicate of the bug “Session restore hangs/not
responding with high CPU on large form with many checkboxes”
(Bug 477564).

Firefox 3.5 is locking on MusicBrainz artist pages that have a lot
of releases.… The lock-ups also occur when using the parameter
“-safe-mode”. (Bug 506553; description; reporter/end-user).

There is a login at the page and that might change the page
itself. Does this page contain many checkboxes if you login?
(Bug 506553; comment 1; commenter/active volunteer).

When reporting bugs, developers prefer to use very technical
languages to describe bugs at the code level, in order to ease the
communications with other developers. In contrast, end users
with lower level of technical expertise tend to draft bug reports
based on the observed symptoms. Such differences create barriers

for non-technical people to find out whether their issues have
already been reported and acted upon, leading to the generation of
duplicate bug reports. For instance, the master report of a bug
about displaying file icons was summarized as “nsIconChannel:
GetHIconFromFile does not support Unicode filenames on Win-
dows” (Bug 415761). In contrast, one of its duplicates described the
issue in a language that is more familiar to the end-users.

I’ve just noticed that in the Downloads menu (which shows
when you download something) all icons are [shown] as folders.
In previous version of Firefox if you download something in the
Downloads menu it was shown (icons) – I mean Pictures had
Picture icon, Files had File icon and so on. But now all items
(pictures, files…) have the same icons – they are shown as
folders. (Bug 504350; description; reporter/end-user).

Disparity of experience is another factor that the creation of the
many “non-real” bugs, especially the invalid bug reports, can be
attributed to. Participants who did not have much bug reporting
experience tended to miss the testing step of using safe mode and
a new profile to check if Firefox works before submitting their bug
reports. Consequently, they filed reports that indeed described
problems caused by extensions or third-party applications, which
other experienced participants had to filter out.

Try http://support.mozilla.com/en-US/kb/SafeþMode and a
new additional test profile http://support.mozilla.com/en-US/
kb/ManagingþProfiles. (Bug 507708; comment 1; commenter/
active volunteer).

Table 4
Types of member differences emerged from analysis (adapted from Jehn et al. (1999), Harrison and Klein (2007).

Attribute Types of differences Definition

Informational Disparity (1) Differences in levels of technical expertise, i.e., proficiency in software engineering
(2) Differences in levels of awareness of information and knowledge about the community

Variety 1) Differences in domains of expertise regarding software design, e.g., usability, security
2) Differences in “batches” of information, resources or perspectives regarding a specific problem

Value Separation Differences in opinion or belief about what is important within the community and what the goal is

Table 3
Coding scheme and frequency of occurrences.

Theme (definition) # Of
occurrences

Sub-level code # Of
occurrences

Increased workload (overhead added to the core activities of the OSS peer
review process)

80 Identifying duplicate bug reports due to different ways of
describing bugs

59

Repeating how to create quality bug reports 21
Frustration and conflicts (dissatisfaction with the outcomes and

unresolved disagreement)
97 Feeling disappointed, underappreciated or claiming to switch

browsers
67

Stating values and beliefs to distinguish from the opponent 30
Situated learning (learning how to in practice) 89 Teaching how to test software and debug bugs 30

Explaining community practices and norms 42
Redirecting requests of patch review 17

Problem characterization (complementing and refining bug description
and identification)

75 Complementing bug reports with testing results in different
environments

48

Refining problems with additional analysis 13
Completing bug reports when original reporters did not
respond

14

Design review (evaluating design ideas and implementations with
different opinions)

27 Articulating additional scenarios and use cases 13

Articulating design rationale with dissent 14
Boundary spanning (sharing information outside the discussion group) 56 Citing other sources outside Bugzilla 26

Participating in discussion from 3rd parties 12
Comparing with competitors’ design 18

J. Wang et al. / Int. J. Human-Computer Studies 77 (2015) 52–65 57

http://support.mozilla.com/en-US/kb/Safe&plus;Mode
http://support.mozilla.com/en-US/kb/Safe&plus;Mode
http://support.mozilla.com/en-US/kb/Safe&plus;Mode
http://support.mozilla.com/en-US/kb/Safe&plus;Mode
http://support.mozilla.com/en-US/kb/Managing&plus;Profiles
http://support.mozilla.com/en-US/kb/Managing&plus;Profiles
http://support.mozilla.com/en-US/kb/Managing&plus;Profiles
http://support.mozilla.com/en-US/kb/Managing&plus;Profiles
http://support.mozilla.com/en-US/kb/Managing&plus;Profiles


[U]sing those modes I was able to determine it was the sk[yp]e
plugin causing the issue (which was installed a few days ago).
(Bug 507708; comment 2; reporter/end-user).

In summary, differences of technical expertise as well as of
experience with the OSS peer review process and community
practices increases the work of screening useless information from
numerous bug reports. Such distribution of workload distracts
developers from performing the core peer review activities, such
as analyzing and fixing real bugs.

4.1.2. Frustration and conflicts associated with value diversity
The “many eyeballs” do not accomplish work as magically as

Linus’s Law sounds. We observed cases in which participants failed
to reach any consensus after extensive negotiations. They experi-
enced frustration and conflicts when they could not resolve the
separation of their values and beliefs. Such differences occur when
people vary in terms of what they think the group or community’s
goal and task should be, what is important within the group or
community, whether members have similar goals, and so forth
(Jehn et al., 1999).

Separation of values became salient in discussions on bug
legitimacy and importance, which usually related to what was
believed to be crucial to the community. Making such judgment
cannot simply achieved by checking whether the software can
function without fixing the bug, but rather entails personal assess-
ments. Core developers emphasize how cost-effective a fix is code-
wise, such as how many users a feature change could affect and
how much the cost would be for code maintenance. In contrast,
other users prioritize the usefulness of a feature to the individual
user’s task at hand and the consistency of interaction paradigm and
interface layout. Whenever such differences arise and neither side
can convince the other party, the core developers have the final say
in the decision-making process and the end-users then get very
frustrated or upset. In the following episode, users were arguing for
keeping the “Properties” context menu because of its ease of use.
However, core developers denied the request, explaining the gain of
removing the corresponding code.

When you have 50 images in the page, or even much less, you
have nnon idea which URL points to the image you want. Till
now, we had an easy way to get meta-data about images and
links, and you remove this feature because you want to save
48 kb of code. (Bug 515368; comment 9; commenter/end-user).

If you’ll permit me to restate your point, I think you’re saying
that you estimate the maintenance cost of 1300 lines of
unowned code and the UI cost of an extra context menu entry
as being collectively lower than the value of providing more
direct built-in access to image metadata on pages with many
images than page info provides. Is that fair?…whether we think
the feature serves a large portion of our users, what the cost is of
keeping it, and what downstream impacts removal might have.
(Bug 515368; comment 12; commenter/core developer).

This is ridiculous and SO, SO unexpected to come from FIreFox.
… (Bug 515368; comment 32; commenter/end-user).

Different beliefs of community objectives and cultures can even
escalate to complaints and criticism on work processes, such as
how decisions are made. Open source, originally emerged as an
opponent of proprietary software, provided users an expectation
of openness and an heightened ability to participate and con-
tribute to the development process. Thus, users tend to conceive of
OSS a democratic place to participate equally, whereas the ones
who have been involved in OSS development for a fairly long time,
such as core developers, consider themselves entitled more power
in decision making. Consequently, users can easily feel unsatisfied

when their requests are not fulfilled, and even decide to withdraw
as illustrated in the last quote below.

Sometimes the democratic system works. Sometimes a group
with a very closed perspective hijack it. Congrats on making FF
a laughing stock of a browser. (Bug 513147; comment 70;
commenter/end-user).

Mozilla is not a democracy. Open source does not mean “the
developers must do my bidding”. And being able to comment
in Bugzilla is a privilege, not a right. (Bug 513147; comment 71;
commenter/core developer).

Mozilla is a meritocracy, and as such, the module owner/peers
have final say over decisions concerning the codebase. (Bug
513147; comment 79; commenter/core developer).

…there’s not much I can do other than switch to Chrome until
someone over there decides that our issue is worthy of their
precious time. (Bug 533535; comment 22; commenter/end-user).

Additionally, frustration and conflicts also arose when people
believed the participants had different goals and agendas. For
example, developers perceived that some users contributed to bug
reporting to get developers altering a Firefox module to fit their
product websites or third-party browser extensions, which
deviated from developers’ goal of serving for the larger user
population. Developers declined such requests but their responses
were not well received.

I’m not sure why you’re coming here asking for help … without
being willing to accept our analysis. (Bug 528153; comment 13;
commenter/core developer).

In contrast, users believed developers’ goal was just to mini-
mize their own workload rather than helping with user problems.
Accordingly, these users found it difficult to trust developers or
appreciate their effort.

I am also fully aware that in situations where people are doing
technical support for a lot of people, their first objective is to
keep their inbox clear by finding someone else to blame. (Bug
528153; comment 14; reporter/end-user).

In short, separation of values and beliefs entails negotiation of
bug legitimacy, priority, community values, and norms. Failures to
establish shared understanding and mutual appreciation lower the
community morale, generate emotional conflicts, and even cause
member withdrawal.

4.2. Benefits

4.2.1. Situated learning associated with informational diversity
Different levels of awareness of information and knowledge

about the community do not just account for the generation of the
many “non-real” bugs, but also creates opportunities for situated
learning (Lave and Wenger, 1991). Such information and knowl-
edge regards how to report and debug bugs, as well as community
norms and practices. They are more experience-based compared
to technical expertise, which often entails long-term formal
education or training. Learning takes place simultaneously when
participants collaborate on the peer review.

In addition to how to create quality bug reports described in
Section 4.1.1, other knowledge being shared can be more difficult
to detach from the specific context. We categorized episodes of
communicating such types of information as situated learning to
emphasize the context contingency, separating from the ones that
can be easily standardized to alleviate developers’ workload. The

J. Wang et al. / Int. J. Human-Computer Studies 77 (2015) 52–6558



following quote illustrates an experienced participant teaching the
reporter how to create a test case specific to the bug.

Can you simplify the test case, by just making the ‘params’ a
hard coded string. I get your program now with bits and pieces.
A proper bug report contains a standalone testcase.

The POST method was invented before UTF-8. It is a proper
unicode encoding, so it should not be a problem to send any
Greek. (Bug 505250; comment 23; commenter/active volunteer).

Disparity of community awareness also emerges when experi-
enced contributors correct other members’ faulty operations or
explain organizational norms and practices to clarify misunder-
standing and confusion. People who are not regularly involved in
Mozilla’s peer review process probably know very little about, for
example, what the meta-data of a bug report represents, but are
only capable of reading with their own interpretations. In the
following case, a reporter who had only commented on 1 bug in
our data set believed the resolution of his bug should be flagged
fixed because Firefox behaved normally after he upgraded to
version 3.5.2. However, an active volunteer, who had contributed
to discussions of 990 bugs in our data collection, modified this flag
to worksforme, indicating the reason that FIXED was not an
appropriate resolution flag.

Resolution FIXED is reserved for bugs that had code applied to
resolve the problem. So at least a bug number is needed. (Bug
502328; comment 19; commenter/active volunteer).

The situated learning not only regards sharing knowledge and
norms, but also identifying appropriate experts. The awareness of
who is qualified or available to address the request requires
extensive and long-term involvement in the project. Participants
without such awareness often specify developers that are not
suitable to resolve the bug. In these cases, well-informed members
will redirect the request, demonstrating who the right person is
through action.

I can’t review code in js src. I’m forwarding to [developer 1],
feel free to forward again in case i did a bad choice. (Bug
526422; comment 2; commenter/core developer).

In sum, information and knowledge about the community is
highly related to the context. Members’ different levels of aware-
ness of them create opportunities for inexperienced members to
learn from experienced collaborators through practice. Enjoyable
learning experiences may enhance the commitment of community
newcomers.

4.2.2. Problem characterization associated with informational
diversity

One of the advantages of OSS peer review lies in the variety of
information and resources the “many eyeballs” have. Such diversity
does not just increase the chance of finding more bugs as Raymond
elaborates on Linus’s Law (Raymond, 2001); we observed that it
also enhanced the characterization of a bug that had already been
reported. One recurring pattern of problem characterization was to
corroborate and enrich the report with testing results in other
environments. Users contributed in a fairly simple and standard
way rather than had to acquire certain analytical skills: they shared
the information regarding the operating systems, software versions,
and other configurations in which they experienced the bug. An
individual usually had much more limited access to those various
testing resources than the crowd. Moreover, users varied in the
ways they used the software, habitually or accidentally, encounter-
ing the problem through slightly different paths. Such differences
enabled a bug report to be collectively constructed with improved

accuracy, thereby facilitating diagnosis and the peer review process.
The role of bug reporters extended beyond the ones submitting
reports to bug tracking systems, encompassing whoever comple-
mented the information about a problem or an issue. The following
excerpt illustrates different participants contributing information
regarding the various operating systems and localizations (i.e.,
software adaptation to different languages, regional differences,
and technical requirements of a targeted international market).

Firefox 3.5 does not ask for save all tabs even when configured
to do so and even when there is only one Firefox window
opened, … My Firefox is 3.5 Brazilian Portuguese version. My
Windows is Vista 64 Ultimate. (Bug 502532; description;
reporter/end-user).

I have a similar problem. Mine does ask, and I tell it to save my
tabs. I open it up the next time, and I get my home page, not my
saved tabs. I tell Firefox to clear the following data when I close
it: Browsing History, Download History, … I’m running Firefox
3.5 English and Windows Vista x64 Ultimate. (Bug 502532;
comment 1; commenter/end-user).

Aside from variety of information, different levels of technical
expertise (e.g., debugging) also appeared to help problem char-
acterization when participants with even slightly better expertise
generated hypothesis, pruned irrelevant information, and per-
formed additional investigation. These extra analyses refined the
problem characterization, allowing someone else to eventually
identify the cause of the defect. In the following episode, the
commenter described how he narrowed down the reported
problem through a series of simple hypothesis testing, which the
bug reporter did not perform but only described the symptom of
Firefox failing to load any web page.

After clicking on any link to a website, and waiting for about
15–30 s, I will get a “Server not found” that Firefox can’t find
the server. I would have to refresh the page in order to get the
website loaded. (Bug 502963; comment 0; reporter/end-user).

[I] face the same issue. … i suspected it’s a network connection,
but other tabs would be loading without issue. chrome doesn’t
face the issue. i don’t face this on ubuntu. i started facing this
only in 3.5. it’s most readily seen while stumbling. and it’s not a
traffic issue (i rarely have more than 3 or 4 tabs open). (Bug
502963; comment 2; commenter/end-user).

Compared to the relatively simple debugging techniques (e.g.,
altering some environmental parameters), some participants even
demonstrated higher level of technical expertise in minimizing test
cases, conducting systematic analysis, and capturing technical details.
In a bug about Firefox halting on large amount of data (Bug 506844),
for example, a commenter created a test case to enable other deve-
lopers to reproduce the bug. He shared the quantitative results of his
preliminary analysis, concluding that “the slowdown is exponential to
the size of the old content (the contents that is erased), but doesn’t
depend (much) of the size of the new contents.”

The other pattern of problem characterization occurred when
participants exhibited variety of time resources and commitment.
In cases where a contributor was not able or willing to take the
time and efforts addressing certain requests or inquiries, other
contributors might do so to complete the problem characteriza-
tion. In the episode below, a reporter did not provide a test case in
his post more than one month ago. An active contributor had
asked for a test case to analyze the problem but the reporter never
responded. After a few weeks, another participant created and
uploaded a workable test case.

2009-07-18A test case is far more useful, then a crash report …
Can you attach input to this bug, that crashes FF? Of course, a

J. Wang et al. / Int. J. Human-Computer Studies 77 (2015) 52–65 59



full test case would be better … (Bug 506844; comment 2;
commenter/active volunteer).

2009-08-28 Since https://bugzilla.mozilla.org has banned our
country IPs I could not check my reported bug regularly. (Bug
506844; comment 12; reporter/end-user).

2009-09-16 Created attachment 401081.

This demonstrates the slowdown on emptying a div with a
bunch of contents via innerHTML … Using the testcase: (1) fill
the div with either 250, 500 or 1000 lines. (2) Empty it with
“Empty (innerHTML)” or by filling it with any number of lines.
(Bug 506844; comment 14; commenter/end-user).

Overall, despite the noise that “many eyeballs” introduce to the
bug finding process, OSS peer review still benefits from the diverse
community for effective characterizations of software defects and
deficiencies. The OSS peer review process allows individuals to
complement and refine the bug reports with variety and disparity
of information and resources, facilitating the process of problem
characterization.

4.2.3. Design review associated with informational diversity
The large number of end-users in the Mozilla community not

only generates the disparity of technical expertise and resources
pertinent to the software development, but also increases the
variety of domain expertise and perspectives. The rest of the
community also varies in terms of the areas they are specialized
in or issues they know well. Such differences allow early design
ideas and actual design implementations of bug solutions to be
reviewed by different experts, creating opportunities of design
improvement.

Users are the best for providing first-hand knowledge of how
the software will be used, which adds to the domain expertise in
usability and user experience. Even though they may not always
be able to reflect or explain their experiences or behaviors, they
can still articulate the scenarios or use cases that are overlooked or
misconceived by the developers. In the bug report that proposed
to “improve Mac install experience: detect that we’re running
from disk image or Download folder”, a participant evaluated the
design ideas from the designer and found a special use case of the
Firefox installer was missing.

Another thing to consider, if only for being aware of it, is that
users with encrypted home folders (FileVault) will be copying
and not moving Firefox when they drag it to the Applications
folder (since the home folder is an encrypted volume different
from where the Apps folder reside, and drag&dropping to
another volume defaults to copying instead of moving). (Bug
516362; comment 12; commenter/end-user).

Given the complexity of OSS like Firefox, the implications of a
design implementation could be very complicated and require
knowledge and expertise from different fields, which is beyond an
individual’s ability to comprehend. Elaboration and dissent among
parties with diverse perspectives help articulate rationale of soft-
ware design, improving its quality. Such disagreements, or even
critiques, are often conveyed in a concrete and constructive way. For
instance, Firefox has teams specialized in user experience, platform,
security, localization (L10n), and so forth. Members from different
teams tend to evaluate design from their own lenses. In the bug for
speeding up Firefox startup, developers believed the file browser-
config.properties “wasn’t doing anything important”, and implemen-
ted a patch to move this file into a jar. They contended that this
solution could avoid “too much compat cost, and pain if we need to
switch back later.” However, a developer from the localization team,
who worked on “translating an application’s menus, dialogue boxes,

labels and other settings (font, character encodings, dictionaries,
default search engine etc) for a particular locale”, disagreed with the
design approach after evaluating the patch and articulated its
downsides from the localization perspective.

FWIW, I don’t agree with the initial comment in this bug, setting
the homepage nisn important. It’s a revenue-generating asset for
us and for everybody that can spoof it, so making that hard to do
is good… browserconfig.properties contains locale dependent
information, and should not be in browser.jar. … We’re also
contemplating changing the url [of browserconfig.properties]
completely for some of our smaller locale, in particular for
Kurdish google doesn’t seem to be a good choice as it prompts
users of our latin-based kurdish with arabic script kurdish. (Bug
524201; comment 13&15; commenter/core developer).

Patch review policies in Mozilla only authorize module/sub-
module authors to evaluate changes to their own code in order to
ensure the proper expertise of the reviewers. However, this also
means that these designated patch reviews typically only involves
one developer per patch, which is sometimes not enough to
capture all the possible defects. It is not uncommon for contribu-
tors outside of the designated review groups to capture faulty
designs. The episode below shows that the requested reviewer
missed one defect in a patch, which was caught by an outside
developer.

The patch is also wrong because bookmarksBarContent may be
absent from the document. (Bug 504858; comment 30; com-
menter/core developer).

Indeed! I should have caught that… (Bug 504858; comment
31; commenter/core developer).

To sum up, variety of domain expertise and perspectives, both
in general and specific to a bug, enriches the scenarios and use
cases being articulated at the early stage of design. Furthermore, it
facilitates the articulation of design rationale through dissent and
critique, assuring the quality of implementations.

4.2.4. Boundary spanning associated with informational diversity
Informational diversity of participants in OSS communities also

includes the variety of knowledge and resources spanning group
and organizational boundaries. Similar to boundary objects (Star,
1989), participants share or leverage knowledge and resources
from other work groups, sub-communities, and organizations that
would not otherwise be accessible or obtainable by the developers
involved in resolving a bug.

In Mozilla, contributors cited reports and discussions outside
bug tracking systems beyond the current discussion group, such as
user support forums and informal community websites, to confirm
a bug’s validity.

I’m gonna confirm this then because I seen a report on
mozillazine with a trunk build that this happens. (Bug 501904;
comment 4; commenter/active volunteer).

Although this was often employed as a strategy to draw
developers’ attention and entice them to act on the problem (e.
g., Bug 501413), it sometimes provided supplemental information
that facilitated problem analysis (e.g., Bug 527540).

Perhaps this seems like a small problem in uncommonly-used
UI, but apparently regular users use the bookmarks sidebar more
than we realize: there have been numerous reports of this
problem in the community forum in Israel and IRC #mozilla.il
since the release of Firefox 3.5. (Bug 501413; comment 20;
commenter/core developer).

J. Wang et al. / Int. J. Human-Computer Studies 77 (2015) 52–6560

https://bugzilla.mozilla.org


… adding additional versions to the bug summary based on the
interesting-modules-with-versions report in http://people.
mozilla.com/crash_analysis/; I’d note that the versions reports
show that the older versions seem to be ok, but the newer
versions seem to be causing crashes. (Bug 527540; comment
10; commenter/core developer).

Knowledge regarding third-party applications is also critical to
bug analysis because of the high interdependencies among software
applications. For instance, Firefox is dependent on a variety of
existing third-party software infrastructure, including database,
operating systems, and multimedia platforms. At the same time,
its design also affects extensions and websites. Developers of these
third-party applications are actively involved in Firefox’s peer
review process, communicating and collaborating with other parti-
cipants on diagnosing and resolving issues affecting both sides. The
excerpt below illustrates a situation in which the reporter encoun-
tered the bug, “Browser segfaults attempting to delete a database
entry (in do_lookup_x () from/lib/ld-linux.so.2) on Twitter and
others.” A developer from Red Hat (software company primarily
offers operating systems and middleware), which was the relevant
third-party in this problem, shared the link to a similar report at
Red Hat that offered his analysis and possible solutions.

We received a similar crash report at https://bugzilla.redhat.
com/show_bug.cgi?id=560662 (Bug 501992; comment 4; com-
menter/third-party contact).

[Reporter]: your problem is caused by canberra which is
presumably delivered by your vendor (fedora), please use
[comment 4]’s bug link to deal with this problem. (Bug
527029; comment 6; commenter/core developer).

Other than cooperating with third-party contacts, participants
in Firefox peer review collaboration also observe, compare, and
learn from other browsers, such as Microsoft Internet Explorer,
Google Chrome, and Opera. Participants with experiences using
multiple browsers often report their personal experiences with
other browsers back to the peer review community.

I believe that the “Paste and Go” option in both Opera and
Chrome is something that would greatly benefit Firefox. For
those that are not familiar with what I am talking about, on
both of the aforementioned browsers, if you right click on the
address bar one of the options that appears in the menu
alongside “Cut”, “Copy”, and “Paste” is the “Paste and Go”
option. This is a small time saver that belongs in Firefox. (Bug
501558; description; reporter/end-user).

More interestingly, developers of competitor browsers occa-
sionally join the conversation and share their design knowledge.
The following episode describes a case in which a Chrome
developer shared the implementation details of the Chrome
browser when he observed that Firefox developers were trying
to match Chrome’s perceived scrolling speed. This also indicates
that developers of major browsers are monitoring features of
competing products closely, and sometimes they even collaborate
to make their products better.

Just so you guys know, if the goal was “match Chrome
behavior”, doubling the system scroll lines value isn’t Chrome’s
behavior at all. (I wrote Chrome’s behavior.)… In short, we use
100 pixel per “three lines”, and the system ticks-lines map-
ping (which defaults to three lines per tick, so by default we do
100 pixel per tick). (Bug 513817; comment 89; commenter/
competitor developer).

In short, the fluidity of OSS organizational boundaries and the
flexibility of OSS community structure allow information flow and

resource configuration spanning across groups and organizations.
Participants with multiple identities contribute their diverse
knowledge and resources that would otherwise be inaccessible
to the peer review process. Such differences benefit problem
diagnosis and design idea generation.

5. Discussion

Our investigation suggests that informational diversity and value
diversity generate both benefits and challenges to the work pro-
cesses and social processes involved in the OSS peer review. For
work process activities such as bug submission, problem identifica-
tion, solution generation, and solution evaluation that are common
to the OSS peer review process (Wang and Carroll, 2011), variety
and disparity of expertise, information and resources enable the
crowd to complement bug reports with their own experiences and
analysis. The crowd enriches the articulation of use scenarios and
design rationale through critique and dissent, as well as exchanges
information with external groups and organizations. Other than
enhancing problem characterization, design review, and boundary
spanning, member differences also create challenges to the work
process of OSS peer review. Specifically, disparity of technical
expertise and community awareness leads to a large number of
redundant, invalid and ambiguous bug reports submitted, increas-
ing the workload of screening bug reports and repeating to novices
about standard peer review techniques. Such disparity, on the other
hand, is beneficial to the social processes in the peer review. It
creates opportunities for cultivating novices with contextualized
software peer review approaches and organizational practices,
reinforcing shared norms, and building social connections. These
practices contribute to community sustainability when facing
member turnover. Besides the benefits of situated learning, separa-
tion of values and beliefs stimulate negotiations over bug legiti-
macy, priority, and community objectives. Such differences create
challenges of frustration and conflicts, which may discourage
community engagement or even result in member withdrawal.

5.1. Understanding member differences in OSS development

Our study contributes to research on large-scale online collabora-
tion in several ways. First, we untangle the underlying differences
among members that are confounded with the focus on core/
periphery dichotomic prevalent in large-scale online peer production
literature. Isolating disparity of technical expertise from that of
community awareness, for both of which core developers are at
higher levels, provides opportunities to uncover the overlooked groups
of contributors. Participants with high-level awareness but low-level
technical expertise, like triagers, and those with low-level awareness
but high-level technical expertise, like co-developers are such groups.
Better understanding of their distinct needs and activities may lead to
tailored design that supports their identities and experiences. Second,
we refine the characterization of informational differences between
developers and users, dividing them into disparity and variety. Ko and
Chilana (2010) emphasized the cost caused by disparity of knowledge
and experience, suggesting to recruit more talented volunteers. Our
observation similarly indicates that such disparity increased workload;
however, the variety of expertise, information and perspectives
enhanced problem characterization, design review and boundary
spanning. Conceiving of variety of information at the level of specific
information regarding a specific issue calls for thinking and designing
beyond the project roles of developer/user, extending to activity roles.
Additionally, the disparity of technical expertise and community
awareness also facilitated situated learning in the community. Third,
we have studied additional diversity attributes that were not exam-
ined in previous online peer production studies. Prior work was

J. Wang et al. / Int. J. Human-Computer Studies 77 (2015) 52–65 61

http://people.mozilla.com/crash_analysis
http://people.mozilla.com/crash_analysis
https://bugzilla.redhat.com/show_bug.cgi?id=560662
https://bugzilla.redhat.com/show_bug.cgi?id=560662


largely focused on quantifiable attributes, such as tenure, language,
and interests. Our qualitative analysis captures the relatively implicit
and dynamic ones, for instance, variety of information and resources
regarding a specific bug.

Our work also extends the understanding of diversity with
findings from the context without traditional organizational bound-
aries. The impacts of informational diversity we identified partially
accord with previous literature on diversity, which suggests
enhancement on work performance (Harrison and Klein, 2007;
Van Knippenberg and Schippers, 2007). We have specifically
discovered that variety of information can serve as a resource for
problem characterization, design review, and boundary spanning.
But these benefits manifest themselves in the OSS community
differently from workgroups with clearly defined group or organi-
zational boundaries: configuration of diverse expertise, information
and resources is not pre-defined but highly fluid. Furthermore, in
contrast to prior research, our results also indicate the challenges
associated with informational diversity, particularly disparity of
technical expertise and community awareness, which may increase
members’ workload of filtering bug reports and communicating
standard procedures. Such disparity is also somewhat relevant to
tenure diversity discussed in earlier studies, as old-timers are likely
to have higher level of community/organizational awareness
(Daniel et al., 2013; Chen et al., 2010; Williams and O’Reilly,
1998). In contrast to the positive effects reported in those papers,
we observed more complicated and nuanced impacts. Different
levels of awareness of information and knowledge about the
community can increase the workload of filtering bug reports and
communicating standard procedures. Meanwhile, unlike technical
expertise entailing relatively long time to acquire, some contextua-
lized peer review techniques and community practices are easy to
communicate through online conversations, which generate learn-
ing opportunities and facilitate community development. With
respect to value diversity, our findings are in line with existing
understandings. In OSS peer review, conflicts and frustrations arise
when members have different beliefs of what is important to the
community and what their goal is. Such differences are not tied to
organizational boundaries like demonstrated in the literature
(Hinds and Kiesler, 2002; Shachaf, 2008) but largely associated
with the sub-communities participants identify with (i.e., developer
vs. user sub-communities) or their status (i.e., core vs. periphery).

We also want to distinguish our contributions from efforts to
evolve peripheral members to the core in online communities: the
benefits and challenges of member differences characterized in our
study indicate that converting members from peripheral to core
may not be the only or ultimate goal for designing effective
online communities. Instead of reducing heterogeneity, we propose
designs embracing and supporting the ways members differ, while
providing possibilities for member integration and evolvement.

5.2. Design implications

5.2.1. Enabling alternative representations of bug reports
The challenge of increased workload and the benefit of pro-

blem characterization entail special support for peripheral mem-
bers, who do not contribute regularly but constitute the majority
of the community. Moreover, people with different domain exper-
tise could become a resource for knowledge development in the
communities. Current bug tracking systems are largely designed to
support core developers’ work. Providing alternative representa-
tions of reported issues can increase the visibility of parallel
ontologies, which may mitigate member differences.

One approach to reducing submissions of duplicate reports is to
translate archived reports and ongoing resolving progress in an
end-user-accessible way. For example, for reports or code changes
regarding user interface, bug tracking systems can represent them

in an interactive visualization that groups and displays them with
each visible component of the browser interface, similar to the
implementation of LemonAid that enables users to find help
through directly selecting interface elements in question
(Chilana et al., 2012). Whenever someone wants to create a report,
s/he can hover over the browser component s/he has problems
with to obtain a list of references to the issues filed under this
component. To translate such visual input into technical descrip-
tion, an additional group of contributors like active volunteers or
bug triagers can help bridge the gap. This will help narrow down
the duplicate candidates, though this alternative representation of
bugs may not apply to issues that are embedded in components
that are invisible on the browser interface.

Another approach to improve identification of duplicate reports
before submission is to enable flexible creation of meta-data that
bridge the gap of contributors’ varying use of terminologies to
characterize a problem. Other than providing system-defined clas-
sifiers to maintain consistent structure within the code repository,
allowing user-generated vocabularies can accommodate a greater
variety of mental models of the software application. Tags may be a
good design option for this purpose. Although they are usually
personal and not always informative, tags can still serve as an extra
index for searching in the system. Moreover, participants who were
to submit a bug report but found out the issue had already been
reported may add their interpretations of the problem as tags. Such
accumulation can further increase the likelihood of identifying
duplicates through bug search. Additional analysis and visualization
of the tags, such as aggregation and highlights, may also inform the
core developers of how end-users perceive problems and issues
that they deem to be more important.

In addition to preventing from filing duplicate bug reports, the
ability to consolidate information from different reporters is
equally important. As our results show, different reporters do
not always report identical information on the same issues.
Offering cross-references to duplicate reports is a simple way for
aggregation, but lacks some integration. Tags may be an alter-
native: they are easier to be aggregated than bug reports; they
would be useful if each of them is informative and distinctive.

Reducing the creation of invalid bugs can also address the
increased workload of filtering reports. Users usually do not read
through documentations that provide extensive instructions about
how to participate in OSS peer review process, either because they
are not willing to or because they are not aware of these
documents. That is probably why more experienced contributors
must repeatedly ask the novice contributors to repeat test cases in
the safe mode and under a new browser profile. Minimizing the
instruction to guide reporters to differentiate user support issues
from real bugs before they submit a report may be an effective
design. For instance, rather than archiving instructions in other
community sites, a page before the report submission form can be
designed in the bug tracking system, asking the reporter to try to
reproduce the problem in safe mode or with a new profile.

5.2.2. Enhancing community awareness and learning experience
Differences of experience may delay the progress of bug

analysis and fixing because of the overhead for communicating
peer review techniques and community practices, as well as
redirecting inappropriate patch review requests, even though they
open up chances of situated learning. Reducing the overhead
requires long-term involvement or at very least – long-term
observation – in the peer review process. However, this require-
ment contradicts the motivation of many contributors who just
want to get their own problem solved. Therefore, making that
experiential knowledge easy to access can enhance community
awareness and learning experience.

J. Wang et al. / Int. J. Human-Computer Studies 77 (2015) 52–6562



Although tutorials and documentation of common techniques
and community standards are available to public, they are not
activated in inexperienced contributors’ actual participation. Auto-
mate reminders in situ may help reduce the workload of core
members. This may increase the efficiency of peer review, but may
also decrease interactions between newcomers and old-timers and
inhibit knowledge sharing within the community. Thus, an alter-
native solution is to nurture a larger group of active members who
are not core Mozilla developers to mediate expert matching. These
contributors are motivated to maintain active and long-term
involvement in the entire OSS peer review process. They do not
have to acquire as much domain expertise as the core developers,
but they have more advanced knowledge of community practices
and refining bug classification than the mass peripheral. These
active volunteers can also introduce low-risk and easy tasks to
novices because of their familiarity with the difficulty and severity
of the ongoing project work. To sustain this group of contributors,
the community needs to show appreciation and acknowledge the
contributions of these triagers, which has not been the case based
on our observations. One possible improvement is to make the
responsibilities and the role of these triagers explicit, such as
organizing a formal team to work specifically on orienting new-
comers and prioritizing bugs, turning the invisible work to visible
(Suchman, 1995). It may also be beneficial to expand the types of
work this group of people do to distinguish them from the rest of
the community. For instance, other than teaching peripheral
members and referring relevant bug reports to core developers,
they can also help build social connections between end-users and
core developers.

Aside from cultivating the learning community from peripheral
members, facilitating the evolvement of this group of active volun-
teers is also important. They are probably motivated to develop their
technical expertise, which is not just beneficial for their individual
career but also for the community if an expert left. For instance,
promoting a mentoring program can help these contributors to
identify their interests and match themwith experienced developers
who are able to provide them with specific advice. Alternatively,
designing technologies to aggregate or externalize core developers’
activities may also create easy access to observe how experts work
and increase the likelihood of social interactions. Such learning
experience may enhance member identificationwith the community,
and thus retain long-term membership and sustain long-term
contribution.

Externalizing the knowledge of developers’ specialties and status,
which was implicit and only accessible to co-developers in the
Mozilla community, may assist with finding the appropriate experts.
One possible approach is to construct dynamic profiles that auto-
matically reflect developers’ activities on software products as well as
other people who have interacted with them over these products.
Another option could be visualizing the social networks of active
community members based on their activities. Adding a social feature
that shows the volume and status of developers’ work in the
community can also help other participants decide whom they should
ask. Developers of Mozilla appropriated their user names in Bugzilla
to indicate the time period they will be unavailable, such as being
away on vacation. This confirms the need of such a feature.

5.2.3. Establishing creditability and incentives
The challenge of frustration and conflicts implies that partici-

pants do not believe in the legitimacy of each other’s expertise.
Bach et al. reported similar findings in their analysis on expertise
in usability (Bach et al., 2009). The belief is also critical to
effectively integrating critiques raised in design review. Mozilla
acknowledges volunteers who have made significant contributions
by announcing their names in its weekly project meetings and

core developers’ blogs. It also credits the ones who have made
enough quality contributions with privilege of editing bug reports
in Bugzilla. However, this coarse characterization of contributions
is weak and insufficient.

Enhancing the visibility of contributions may facilitate credit-
ability establishment. One design solution is to create profiles for
individuals that record past contributions and displaying them
when the participants interact with others. Tracking the accumu-
lation of experience and quality work may also enhance partici-
pants’ self-efficacy in producing valuable contributions to the
community, motivating them to continue participating.

Additionally, a sophisticated evaluation system can address the
variety of contribution types and motivations of participation.
Currently, the community only maintains a web page that lists
contributors who are identified by whether they wrote code or
documentation or participated in testing tasks for Mozilla. A finer
characterization of contributions would be more beneficial for
rewarding participants. For example, a bulletin board that specifies
different types of contributions and updates representative work
for each type might be a design option to present quality of
contributions rather than quantities. Furthermore, the bug track-
ing system may also allow contributors to rate their own con-
tributions. A contributor can rate a comment highly if s/he finds
the information useful for bug analysis. The contributors who have
provided many highly rated contributions could receive special
recognition in the community as a reward.

5.2.4. Creating channels for information integration
Third-party contacts that bridge different work groups and

connect OSS communities with other organizations do not parti-
cipate regularly in OSS communities. Probing them only when
issues arise is not always an effective practice. In contrast, keeping
regular contact with them may augment the benefit of boundary
spanning, forming early design ideas and foreseeing potential
problems.

Leveraging new media, or even creating a new communication
channel for debriefing the most recent updates of other groups
and organizations may facilitate information exchange. Such
information are currently scattered in various places and informa-
tion sources, and most members do not have a clue of how to
gather that. The integration of information sources provides the
basis for content synthesis. Furthermore, updates like this do not
have to be frequent or overly detailed but classifiable by multiple
criteria beyond organizational boundaries. Have integrated infor-
mation sources could also reduce redundant dyadic interactions.
Mozilla currently hosts weekly project meetings, in which the user
support team raises popular concerns or complaints in the support
forum to the development team. It also implemented a blog feed
that incorporates relevant blogs within the Mozilla community
where members share their work progress and reflections in
their blogs.

5.3. Limitations and future work

Our current analysis is constrained by its case selection and data
sources. We chose Mozilla because of its large and diverse commu-
nity, complexity and recognition; however, some of its characteristics
differ from other OSS projects, which could be affected differently by
the types of member differences described in this paper. Unlike
purely volunteer-based communities, Mozilla is comprised of both
paid members and volunteers. Moreover, Mozilla’s OSS practices may
differ from those of smaller and decentralized OSS projects; it follows
strict and formal procedures of peer review and clearly defines the
roles and responsibilities of its core members. We focused our
investigation on bug reports archived by bug tracking systems, even

J. Wang et al. / Int. J. Human-Computer Studies 77 (2015) 52–65 63



though the interactions in the peer review process may involve the
usage of other computer-mediated communication tools. Other OSS
projects that heavily rely on mailing lists to perform peer reviewmay
exhibit different impacts of member differences. Rather than cali-
brating the degrees of member diversity, our qualitative analysis was
intended to identify and characterize the impacts of member
diversity, particularly the dynamics emerged from member interac-
tions. This approach determines that the types of member diversity
were inferred from observations of those dynamics. We plan to
compare our findings with other OSS communities in future work
and gather feedback on our design implications from the Mozilla
community to evaluate their feasibility and effectiveness.

6. Conclusion

Member differences are inevitable and important to effective
collaboration and innovation. Large-scale volunteer-based distrib-
uted online collaboration requires understanding of differences
among participants and their impacts. Our investigation on the
peer review processes in an OSS community, Mozilla, shows that
member differences bring both challenges and benefits to the
online collaboration. Disparity of information, particularly with
respect to technical expertise and community awareness, increases
members’ workload but facilitates situated learning. Variety of
information and perspectives regarding a specific issue as well as
variety of domain expertise is beneficial to problem characteriza-
tion, design review, and boundary spanning. Moreover, the chal-
lenge of frustration and conflicts arises when separation of values is
externalized through communication. These findings complement
the understanding of diversity studied on ad hoc teams in organiza-
tional and laboratory settings. Our articulation of member differ-
ences also explicates underlying variances among community
participants with greater granularity than the prevailing dichotomy
of core/periphery or developer/user in online peer production
research. It creates opportunities to better understand, support,
and leverage insufficiently recognized groups of community mem-
bers, such as triagers and co-developers. Our study also suggests
that leveraging crowds to collaborative knowledge work not only
lies in evolving the peripheral to the core, but also appreciating and
supporting the heterogeneity. We recommend approaches to aug-
ment the benefits as well as mitigate the challenges—enabling
alternative representations of bug reports, enhancing community
awareness and learning experience, establishing creditability and
incentives, and creating channels for information integration.

Acknowledgements

This work is supported by the US NSF (0943023). We thank our
partner, the Mozilla organization for sharing their practices.

References

Bach, P.M., DeLine, R., Carroll, J.M., 2009. Designers wanted: participation and the
user experience in open source software development. In: Proceedings of the
CHI2009. ACM Press, 985–994.

Barcellini, F., Detienne, F., Burkhardt, J.M., 2008. User and developer mediation in an
Open Source Software community: boundary spanning through cross partici-
pation in online discussions. Int. J. Hum. Comput. Stud. 66, 558–570.

Begel, A., DeLine, R., Zimmermann, T., 2010. Social media for software engineering.
In: Proceedings of the FSE/SDP 2010. ACM, 33–38.

Bertram, D., Voida, A., Greenberg, S., Walker, R., 2010. Communication, collabora-
tion, and bugs: the social nature of issue tracking in software engineering.
In: Proceedings of the CSCW2010. ACM Press, 291–300.

Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, R., Zimmermann, T., 2008a. What
makes a good bug report? In: Proceedings of the FSE 2008. ACM Press, 308–318.

Bettenburg, N., Premraj, R., Zimmermann, T., Kim, S., 2008b. Duplicate bug reports
considered harmful…really?In: Proceedings of the ICSM08. IEEE, 337–345.

Borgatti, S.P., Everett, M.G., 2000. Models of core/periphery structures. Soc. Netw.
21, 375–395.

Breu, S., Premraj, R., Sillito, J., Zimmermann, T., 2010. Information needs in bug
reports: improving cooperation between developers and users. In: Proceedings
of the CSCW2010. ACM Press, 301–310.

Cataldo, M., Wagstrom, P.A., Herbsleb, J.D., Carley, K.M., 2006. Identification of
coordination requirements: implications for the design of collaboration and
awareness tools. In: Proceedings of the CSCW2006. ACM, 353–362.

Chen, J., Ren, Y., Riedl, J., 2010. The effects of diversity on group productivity andmember
withdrawal in online volunteer groups. In: Proceedings of the CHI2010. ACM Press,
821–830.

Chilana, P.K., Ko, A.J., Wobbrock, J.O., 2012. LemonAid: selection-based crowd-
sourced contextual help for web applications. In: Proceedings of the CHI2012.
ACM Press, 1549–1558.

Cramton, C.D., 2001. The mutual knowledge problem and its consequences for
dispersed collaboration. Org. Sci., 346–371.

Crowston, K., Howison, J., 2006. Hierarchy and centralization in free and open
source software team communications. Knowl. Technol. Policy 18, 65–85.

Crowston, K., Scozzi, B., 2002. Open source software projects as virtual organisa-
tions: competency rallying for software development. IEEE Software 149, 3–17.

Crowston, K., Scozzi, B., 2008. Bug fixing practices within free/libre open source
software development teams. J. Database Manage. 19, 1–30.

Dahlander, L., Frederiksen, L., 2012. The core and cosmopolitans: a relational view
of innovation in user communities. Org. Sci. 23, 988–1007.

Damian, D.E., Zowghi, D., 2003. An insight into the interplay between culture,
conflict and distance in globally distributed requirements negotiations. In:
Proceedings of the HICSS’03. IEEE, 10.

Daniel, S., Agarwal, R., Stewart, K.J., 2013. The effects of diversity in global,
distributed collectives: a study of open source project success. Inf. Syst. Res.
24, 312–333.

Feller, J., Fitzgerald, B., Hissam, S., Lakhani, K., 2005. Perspectives on Free and Open
Source Software. The MIT Press.

Fielding, R.T., 1999. Shared leadership in the Apache project. Commun. ACM 42, 42–43.
Francalanci, C., Merlo, F., 2008. Empirical analysis of the bug fixing process in open

source projects. Open Source Dev. Commun. Qual., 187–196.
Grinter, R.E., Herbsleb, J.D., Perry, D.E., 1999. The geography of coordination: dealing

with distance in R&D work. In: Proceedings of the GROUP1999. ACM, 306–315.
Guimera, R., Uzzi, B., Spiro, J., Amaral, L.A.N., 2005. Team assembly mechanisms

determine collaboration network structure and team performance. Science 308,
697–702.

Harrison, D.A., Klein, K.J., 2007. What’s the difference? Diversity constructs as
separation, variety, or disparity in organizations. Acad. Manage. Rev. 32,
1199–1228.

Herbsleb, J.D., Mockus, A., 2003. An empirical study of speed and communication in
globally distributed software development. IEEE Trans. Software Eng. 29, 481–494.

Hinds, P., Kiesler, S., 2002. Distributed Work. The MIT Press.
Jehn, K.A., Northcraft, G.B., Neale, M.A., 1999. Why differences make a difference: a

field study of diversity, conflict and performance in workgroups. Adm. Sci. Q.
44, 741–763.

Jeong, G., Kim, S., Zimmermann, T., 2009. Improving bug triage with bug tossing
graphs. In: Proceedings of the ESEC-FSE 09. ACM Press, 111–120.

Joshi, A., Roh, H., 2009. The role of context in work team diversity research: a meta-
analytic review. Acad. Manage. J. 52, 599–627.

Kittur, A., Suh, B., Pendleton, B.A., Chi, E.H., 2007. He says, she says: conflict and
coordination inWikipedia. In: Proceedings of the CSCW2007. ACM Press, 453–462.

Ko, A., Chilana, P., 2010. How power users help and hinder open bug reporting. In:
Proceedings of the CHI2010. ACM Press, 1665–1674.

Lave, J., Wenger, E., 1991. Situated Learning: Legitimate Peripheral Participation.
Cambridge University Press.

Milliken, F.J., Bartel, C.A., Kurtzberg, T.R., Paulus, P., Nijstad, B., 2003. Diversity and
creativity in work groups: a dynamic perspective on the affective and cognitive
processes that link diversity and performance, Group Creativity: Innovation
Through Collaboration. Oxford University Press, New York.

Mockus, A., T Fielding, R.O.Y., Herbsleb, J., D., 2002. Two case studies of open source
software development: Apache and Mozilla. ACM Trans. Software Eng. Meth-
odol. 11, 309–346.

Moon, J.Y., Sproull, L., 2000. Essence of Distributed Work: The Case of the Linux
Kernel. First Monday, 5.

Olson, G.M., Olson, J.S., 2000. Distance matters. Hum. Comput. Interact. 15, 139–178.
Raymond, E.S., 2001. The Cathedral and the Bazaar: Musings on Linux and Open

Source by an Accidental Revolutionary. O’Reilly.
Rigby, P., German, D., Storey, M., 2008. Open source software peer review practices: a

case study of the apache server. In: Proceedings of the ICSE’08. ACM Press, 541–550.
Rigby, P.C., Storey, M.A., 2011. Understanding broadcast based peer review on open

source software projects. In: Proceedings of the ICSE2011. ACM, 541–550.
Roberts, J., Hann, I.L.H., Slaughter, S., 2006. Understanding the motivations,

participation and performance of open source software developers: a long-
itudinal study of the Apache projects. Manage. Sci. 52, 984–999.

Rullani, F., Haefliger, S., 2013. The periphery on stage: the intra-organizational
dynamics in online communities of creation. Res. Policy 42, 941–953.

Sandusky, R.J., Gasser, L., 2005. Negotiation and the coordination of information and
activity in distributed software problem management. In: Proceedings of the
GROUP2005. ACM Press, 187–196.

Shachaf, P., 2008. Cultural diversity and information and communication technology
impacts on global virtual teams: an exploratory study. Inf. Manage. 45, 131–142.

J. Wang et al. / Int. J. Human-Computer Studies 77 (2015) 52–6564

http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref1
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref1
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref1
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref2
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref2
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref3
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref3
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref4
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref4
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref5
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref5
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref6
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref6
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref7
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref7
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref8
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref8
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref8
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref9
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref9
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref10
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref11
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref11
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref12
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref12
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref12
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref13
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref13
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref13
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref14
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref14
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref15
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref16
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref16
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref16
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref17
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref17
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref18
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref18
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref19
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref19
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref19
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref19
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref20
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref20
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref20
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref21
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref22
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref22
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref23
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref23
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref23
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref24
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref24
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref25
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref25


Singh, P.V., 2010. The small-world effect: the influence of macro-level properties of
developer collaboration networks on open-source project success. ACM Trans.
Software Eng. Methodol. (TOSEM) 20, 6.

Star, S.L., 1989. The structure of ill-structured solutions: boundary objects and
heterogeneous distributed problem solving. In: HUHNS, M., GASSER, L. (Eds.),
Distributed Artificial Intelligence II. Morgan Kauffmann, Menlo Park, CA.

Storey, M.-A., Treude, C., van Deursen, A., Cheng, L.-T., 2010. The impact of social
media on software engineering practices and tools. In: Proceedings of the FSE/
SDP 2010. ACM, 359–364.

Suchman, L., 1995. Making work visible. Commun. ACM 38, 56–64.
Tan, Y., Mookerjee, V., Singh, P., 2007. Social capital, structural holes and team

composition: collaborative networks of the open source software community.
In: Proceedings of the ICIS 2007, 155.

Twidale, M.B. Nichols, D.M., 2005. Exploring usability discussions in open source
development. In: Proceedings of the HICSS’05. 198c.

Uzzi, B., 1997. Social structure and competition in interfirm networks: the paradox
of embeddedness. Adm. Sci. Q., 35–67.

Uzzi, B., Amaral, L.A., Reed-Tsochas, F., 2007. Small world networks and manage-
ment science research: a review. Eur. Manage. Rev. 4, 77–91.

Van Knippenberg, D., Schippers, M.C., 2007. Work group diversity. Annu. Rev.
Psychol. 58, 515–541.

Viégas, F.B., Wattenberg, M., Dave, K., 2004. Studying cooperation and conflict
between authors with history flow visualizations. In: Proceedings of the
CHI2004. ACM Press, 575–582.

Wang, J., Carroll, J.M., 2011. Behind Linus’s law: a preliminary analysis of open
source software peer review practices in Mozilla and Python. In: Proceedings of
the CTS2011. IEEE, 117–124.

Williams, K.Y., O’Reilly, C.A., 1998. Demography and diversity in organizations: a
review of 40 years of research. Res. Org. Behav. 20, 77–140.

Yamauchi, Y., Yokozawa, M., Shinohara, T., Ishida, T., 2000. Collaboration with Lean
Media: how open-source software succeeds. In: Proceedings of the CSCW2000.
ACM Press, 329–338.

Jing Wang received her Ph.D. degree in Information
Sciences and Technology at Pennsylvania State Univer-
sity in 2013. Her research interests include human-
computer interaction, computer-supported cooperative
work, social computing, online communities, persua-
sive technologies, and creativity. She has published
studies in a variety of domains, such as software
development, education, and healthcare.

Patrick C. Shih received the B.S. degree in computer
science and engineering from the University of Califor-
nia, Los Angeles, in 2003, the M.S. degree in Informa-
tion Networking from Carnegie Mellon University in
2005, and the Ph.D. degree in Information and Com-
puter Science from the University of California, Irvine in
2011. In 2012, he joined the College of Information
Sciences and Technology at The Pennsylvania State
University as a Research Associate. His current research
interests include community informatics, healthcare
informatics, virtual communities, and educational tech-
nologies. Dr. Shih is a member of IEEE and ACM.

John M. Carroll is Distinguished Professor of Informa-
tion Sciences and Technology at Pennsylvania State
University. Recent books include Learning in Commu-
nities (Springer, 2009), The Neighborhood in the Internet:
Design Research Projects in Community Informatics (Rou-
tledge, 2012), and Creativity and Rationale: Enhancing
Human Experience by Design (Springer, 2012). Carroll is
editor of the Synthesis Lectures on Human-Centered
Informatics. Carroll received the Rigo Award and CHI
Lifetime Achievement Award from ACM, the Goldsmith
Award from IEEE. He is a fellow of AAAS, ACM, APS, HFES,
and IEEE. In 2012, he received an honorary doctorate in
engineering from Universidad Carlos III de Madrid.

J. Wang et al. / Int. J. Human-Computer Studies 77 (2015) 52–65 65

http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref26
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref26
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref26
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref27
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref27
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref27
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref28
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref29
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref29
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref30
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref30
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref31
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref31
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref32
http://refhub.elsevier.com/S1071-5819(15)00008-7/sbref32

	Revisiting Linus’s law: Benefits and challenges of open source software peer review
	Introduction
	Related work
	Open source software peer review
	Diversity in collocated and distributed groups
	Member differences in large-scale online peer production
	Differences between core and periphery
	Differences between developers and users
	Differences of other attributes


	Methods
	Case selection and description
	Data collection and sampling
	Data analysis

	Results
	Challenges
	Increased workload associated with informational diversity
	Frustration and conflicts associated with value diversity

	Benefits
	Situated learning associated with informational diversity
	Problem characterization associated with informational diversity
	Design review associated with informational diversity
	Boundary spanning associated with informational diversity


	Discussion
	Understanding member differences in OSS development
	Design implications
	Enabling alternative representations of bug reports
	Enhancing community awareness and learning experience
	Establishing creditability and incentives
	Creating channels for information integration

	Limitations and future work

	Conclusion
	Acknowledgements
	References




