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Tier 1 Analysis Examination
August 1998

1. Consider the sequence of functions fk(x) := {sin(kx)}, k = 1, 2, . . . , and observe
that sin(kx) = 0 if x = m⇡/k for all integers m. Given an arbitrary interval
[a, b], show that {fk} has no subsequence that converges uniformly on [a, b].

2.
(a) Given a sequence of functions fk defined on [0, 1], define what it means for

{fk} to be equicontinuous.
(b) Let G(x, y) be a continuous function on R2 and suppose for each positive

integer k, that gk is a continuous function defined on [0, 1] with the property
that |gk(y)|  1 for all y 2 [0, 1]. Now define

fk(x) :=
Z 1

0
gk(y)G(x, y) dy.

Prove that the sequence {fk} is equicontinuous on [0, 1].

3. Let ⌦ ⇢ Rn be an open connected set and let ⌦ f�! ⌦ be a C1 transformation
with the property that determinant of its Jacobian matrix, |Jf |, never vanishes.
That is, |Jf(x)| 6= 0 for each x 2 ⌦. Assume also that f�1(K) is compact
whenever K ⇢ ⌦ is a compact set. Prove that f(⌦) = ⌦.

4. Let G(x, y) be a continuous function defined on R2. Consider the function f
defined for each t > 0 by

f(t) :=
Z Z

x2+y2<t2

G(x, y)p
t2 � x2 � y2

dx dy.

Prove that
lim

t!0+
f(t) = 0.

5. Let (X,d) be a compact metric space and let G be an arbitrary family of open
sets in X. Prove that there is a number � > 0 with the property that if x, y 2 X
are points with d(x, y) < �, then there exists an open set U 2 G such that both
x and y belong to U .

6. Let � := {(x, y, z) 2 R3 : exy = x, x2 + y2 + z2 = 10}. The Implicit Func-
tion theorem ensures that � is a curve in some neighborhood of the point
p = (e, 1

e ,
q

10 � e2 � 1
e2 ). That is, there is open interval I ⇢ R1 and a C1

mapping I
��! � such that �(0) = p. Find a unit vector v such that v = ± �0(0)

|�0(0)| .

7. Suppose that a hill is described as {(x, y, z) 2 R3 : (x, y, f(x, y))} where
f(x, y) = x3 +x�4xy�2y2. Suppose that a climber is located at p = (1, 2, �14)
on the hill and wants to move from p to another location on the hill without
changing elevation. In which direction should the climber proceed from p? Ex-
press your answer in terms of a vector and completely justify your answer.
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8. Suppose g and fk (k = 1, 2, . . . ) are defined on (0,1), are Riemann integrable
on [t, T ] whenever 0 < t < T < 1, |fk|  g, fk ! f uniformly on every compact
subset of (0,1), and Z 1

0
g(x) dx < 1.

Prove that
lim

k!1

Z 1

0
fk(x) dx =

Z 1

0
f(x) dx.



Tier 1 Analysis Examination
January 1999

1. Prove that the function

f(x) =
⇢

x + 2x2 sin(1/x) if x 6= 0
0 if x = 0

satisfies f 0(0) > 0, but that there is no open interval containing 0 on which f is
increasing.

2. Let F :R2 ! R2 be a mapping defined by F (x, y) = (u, v) where

u = u(x, y) = x cos(y)
v = v(x, y) = y cos(x).

Note that F (�⇡/3,⇡/3) = (�⇡/6,⇡/6).
(i) Show that there exist neighborhoods U of (�⇡/3,⇡/3), V of (�⇡/6,⇡/6), and

a di↵erentiable function G:V ! U such that F restricted to U is one-to-one,
F (U) = V and G(F (x, y)) = (x, y) for every (x, y) 2 U .

(ii) Let U, V and G be as in part (i), and write

G(u, v) = (x, y), with x = x(u, v), y = y(u, v).

Find
@x

@u
(�⇡/6,⇡/6) and

@y

@v
(�⇡/6,⇡/6).

3. Beginning with a1 � 2, define a sequence recursively by an+1 =
p

2 + an. Show
that the sequence is monotone and compute its limit.

4. Let f :K ! Rn be a one-to-one continuous mapping, where K ⇢ Rn is a compact
set. Thus, the mapping f�1 is defined on f(K). Prove that f�1 is continuous.

5. Let S denote the 2-dimensional surface in R3 defined by F :D ! R3 where
D = {(x, y) : x2 + y2  4} and F (x, y) = (x, y, 6 � (x2 + y2)). Let ! be the
di↵erential 1-form in R3 defined by ! = yz2 dx+xz dy+x2y2 dz. After choosing
an orientation of S, evaluate the integral

Z
S

z dx ^ dy + d!.

6. Let f :U ! R1 where U := (0, 1) ⇥ (0, 1). Thus, f = f(x, y) is a function of two
variables. Assume for each fixed x 2 (0, 1), that f(x, ·) is a continuous function
of y. Let F denote the countable family of functions f(·, r) where r 2 (0, 1)
is a rational number. Thus, for each rational number r 2 (0, 1), f(·, r) is a
function of x. Assume that the family F is equicontinuous. Now prove that f is
a continuous function of x and y; that is, prove that f :U ! R1 is a continuous
function.
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7. Let f1 � f2 � f3 � . . . be a sequence of real-valued continuous functions defined
on the closed unit ball B ⇢ Rn such that lim

k!1
fk(x) = 0 for each x 2 B. Prove

that fk ! 0 uniformly on B. This is a special case of Dini’s theorem. You may
not appeal to Dini’s theorem to answer the problem.

8. Let f :R1 ! R1 be a nonnegative function satisfying the Lipschitz condition
|f(x1)�f(x2)|  K|x1 �x2| for all x1, x2 2 R1 and where K > 0. Suppose that

Z 1

0
f(x) dx < 1.

Prove that
lim

x!1
f(x) = 0.

9. Let F be a nonnegative, continuous real-valued function defined on the infinite
strip {(x, y) : 0  x  1, y 2 R1} with the property that F (x, y)  4 for all
(x, y) 2 [0, 1]⇥ [0, 2]. Let fn be a continuous piecewise-linear function from [0, 1]
to R1 such that fn(0) = 0, fn is linear on each interval of the form [ i

n , i+1
n ],

i = 0, 1, . . . , n � 1, and for x 2 ( i
n , i+1

n ), f 0
n(x) = F ( i

n , fn( i
n )). Prove that there

is a subsequence {fnk} of {fn} such that fnk converges uniformly to a function
f on [0, 1/2].





Tier 1 Analysis Exam

January 2000

1. Let Ω be an open set in R
2. Let u be a real-valued function on Ω. Suppose that for

each point a ∈ Ω the partial derivatives ux(a) and uy(a) exist and are equal to zero.

(i) Prove that u is locally constant, i.e. for every point in Ω there is a neighborhood

on which u is a constant function.

(ii) Prove that if Ω is connected, then u is a constant function on Ω .

2. Let S be the surface in the Euclidean space R
3 given by the equation x2 + y2 − z2 =

1 , 0 ≤ z ≤ 1, oriented so that the normal vector points away from the z-axis. Find∫
S

F · dS , where F is the vector field defined by

F(x, y, z) = (−xy2 + z5, −x2y, (x2 + y2)z) .

3. Let f(x) = ex − cos x for x ∈ R .

(i) Show that on a neighborhood around x = 0, f has an inverse function g with

g(0) = 0 .

(ii) Compute g′′(0) .

(iii) Show that there exists a > 0 such that f : (−a,∞) → (f(−a),∞) is a homeo-

morphism.

4. For positive numbers k1, k2, k3, . . . we define [k1] = 1
k1

, [k1, k2] = 1
k1+[k2]

,

[k1, k2, k3] = 1
k1+[k2,k3]

, and inductively, [k1, . . . , kn+1] = 1
k1+[k2,...,kn+1]

. Prove

that lim
n→∞

[k1, . . . , kn] exists if kn ≥ 2 for all n.

5. Two circular holes of radius 1 in are drilled from the centers of two faces of a solid

cube of volume 64 in3 . Compute the volume of the remaining solid.

6. Let ϕ1, ϕ2, ϕ3, . . . be non-negative continuous functions on [−1, 1] such that

(i)
∫ 1
−1 ϕk(t)dt = 1 for k = 1, 2, 3, . . . ;

(ii) for every δ ∈ (0, 1) lim
k→∞

ϕk = 0 uniformly on [−1,−δ] ∪ [δ, 1] .

1



Prove that for every continuous function f : [−1, 1] → R we have

lim
k→∞

∫ 1

−1
f(t)ϕk(t)dt = f(0) .

7. Suppose lim
n→∞

an = a , lim
n→∞

bn = b , and let

cn =
a1bn + a2bn−1 + · · ·+ anb1

n
.

Prove that lim
n→∞

cn = ab .

8. Let f : R → R be a uniformly continuous function on R. Prove that there exist

positive constants A and B such that

|f(x)| ≤ A|x| + B for all x ∈ R .

9. Let f : R → R be a differentiable function. Suppose lim
x→∞

f(x)
x

= 1. Prove that there

exists a sequence {xn}∞n=1 such that lim
n→∞

xn = ∞ and lim
n→∞

f ′(xn) = 1 .
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Name ID number

Analysis Qualifying Exam, Spring 2002, Indiana University

Instructions. There are nine problems, each of equal value. Show your work,

justifying all steps by direct calculation or by reference to an appropriate theorem.

Good luck!

1. Let a0, a1, ..., an be a set of real numbers satisfying

a0 +
a1

2
+ · · · + an

n + 1
= 0.

Prove that the polynomial Pn(x) = a0 + a1x + · · · + anxn has at least one root in

(0, 1).

2. Let fn : R → R be differentiable, for all n, with derivative uniformly bounded

(in absolute value) by 1. Further assume that limn→∞ fn(x) = g(x) exists for all

x ∈ R. Prove that g : R → R is continuous.

3. Let f : R2 → R have the property that for every (x, y) ∈ R2, there exists

some rectangular interval [a, b] × [c, d], a < x < b, c < y < d, on which f is

Riemann integrable. Show that f is Riemann integrable on any rectangular interval

[e, f ] × [g, h].

4. Show that the sequence

1/2, (1/2)1/2, ((1/2)1/2)1/2, (((1/2)1/2)1/2)1/2, . . .

converges to a limit L, and determine this limit.

5. Let f , g : R2 → R be functions with continuous first derivative such that the

map F : (x, y) → (f, g) has Jacobian determinant

det
(

fx fy

gx gy

)

identically equal to one. Show that F is open, i.e., it takes open sets to open sets.

If also f is linear , i.e. fx and fy are constant, show that F is one-to-one.

6. Let f : (0, 1] → R have continuous first derivative, with f(1) = 1 and

|f ′(x)| ≤ x−1/2 if |f(x)| ≤ 3. Prove that limx→0+ f(x) exists.



2

7. Letting S = {(x, y, z) : x2 + y2 + z2 = 1} denote the unit sphere in R3,

evaluate the surface integral

F = −
∫ ∫

S
P (x, y, z)ν dA,

where ν(x, y, z) = (x, y, z) denotes the outward normal to S, dA the standard

surface element, and:

(a) P (x, y, z) = P0, P0 a constant.

(b) P (x, y, z) = Gz, G a constant.

Remark (not needed for solution): F corresponds to the total buoyant force

exerted on the unit ball by an external, ideal fluid with pressure field P .

8. Compute the integral

∫
C

y(z + 1)dx + xzdy + xydz,

where C : x = cos θ, y = sin θ, z = sin3 θ + cos3 θ, 0 ≤ θ ≤ 2π.

9. Let X and Y be metric spaces and f : X → Y . If limp→x f(p) exists for all

x ∈ X, show that g(x) = limp→x f(p) is continuous on X.



Tier 1 Analysis Examination – August, 2002

1. In the classical false position method to find roots of f(x) = 0, one begins with two approximations
x0, x1 and generates a sequence of (hopefully) better approximations via

xn+1 = xn − f(xn)
xn − x0

f(xn) − f(x0)
for n = 1, 2, . . .

Consider the following sketch in which the function f(x) is to be increasing and convex:

Fig. 1.2

f(x)
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The sequence {xn} is constructed as follows. We begin with the two approximations (x0, f(x0)) and
(x1, f(x1)) = (0, f(0)) The chord is drawn between these two points; the point at which this chord crosses
the x–axis is taken to be the next approximation x2. One then draws the chord between the two points
(x0, f(x0)) and (x2, f(x2)). The next approximation x3 is that point where this chord crosses the axis, as
shown. For f strictly increasing and convex and for initial approximations x0 > 0, x1 = 0 with f(x0) > 0,
f(x1) < 0, prove rigorously that this sequence must converge to the unique solution of f(x) = 0 over [x1, x0].

2. (a) Show that it is possible to solve the equations

xu2 + yzv + x2z − 3 = 0

xyv3 + 2zu − u2v2 − 2 = 0

for (u, v) in terms of (x, y, z) in a neighborhood of (1, 1, 1, 1, 1).

(b) Given that the inverse of the matrix
(

2 1
0 1

)
is

(
1
2 − 1

2
0 1

)

find ∂u
∂x at (1, 1, 1).

3. Let X be a complete metric space and let Y be a subspace of X. Prove that Y is complete if and only if
it is closed.

4. Suppose f : K → R1 is a continuous function defined on a compact set K with the property that f(x) > 0
for all x ∈ K. Show that there exists a number c > 0 such that f(x) ≥ c for all x ∈ K.

5. Let f(x) be a continuous function on [0, 1] which satisfies
∫ 1

0
xnf(x) dx = 0 for all n = 0, 1, . . .



Prove that f(x) = 0 for all x ∈ [0, 1].

6. Show that the Riemann integral
∫ ∞
0

sin x
x dx exists.

7. Let
G(x, y) =

{
x(1 − y) if 0 ≤ x ≤ y ≤ 1
y(1 − x) if 0 ≤ y ≤ x ≤ 1

Let {fn(x)} be a uniformly bounded sequence of continuous functions on [0, 1] and consider the sequence

un(x) =
∫ 1

0
G(x, y)fn(y) dy.

Show that the sequence {un(x)} contains a uniformly convergent subsequence on [0, 1].

8. Let f be a real–valued function defined on an open set U ⊂ R2 whose partial derivatives exist everywhere
on U and are bounded. Show that f is continuous on U .

9. For x ∈ R3 consider spherical coordinates x = rω where |ω| = 1 and |x| = r. Let ωk be the k’th component
of ω for any k = 1, 2, 3. Use the divergence theorem to evaluate the surface integral

∫
|ω|=1

ωk dS.

10. Let {fk} be a sequence of continuous functions defined on [a, b]. Show that if {fk} converges uniformly
on (a, b), then it also converges uniformly on [a, b].

11. Let f : Rn → Rk be a continuous mapping. Show that f(S) is bounded in Rk if S is a bounded set in Rn.



Tier 1 Analysis Examination – August, 2002

1. In the classical false position method to find roots of f(x) = 0, one begins with two approximations
x0, x1 and generates a sequence of (hopefully) better approximations via

xn+1 = xn − f(xn)
xn − x0

f(xn) − f(x0)
for n = 1, 2, . . .

Consider the following sketch in which the function f(x) is to be increasing and convex:

Fig. 1.2
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The sequence {xn} is constructed as follows. We begin with the two approximations (x0, f(x0)) and
(x1, f(x1)) = (0, f(0)) The chord is drawn between these two points; the point at which this chord crosses
the x–axis is taken to be the next approximation x2. One then draws the chord between the two points
(x0, f(x0)) and (x2, f(x2)). The next approximation x3 is that point where this chord crosses the axis, as
shown. For f strictly increasing and convex and for initial approximations x0 > 0, x1 = 0 with f(x0) > 0,
f(x1) < 0, prove rigorously that this sequence must converge to the unique solution of f(x) = 0 over [x1, x0].

2. (a) Show that it is possible to solve the equations

xu2 + yzv + x2z − 3 = 0

xyv3 + 2zu − u2v2 − 2 = 0

for (u, v) in terms of (x, y, z) in a neighborhood of (1, 1, 1, 1, 1).

(b) Given that the inverse of the matrix
(

2 1
0 1

)

is
(

1
2 − 1

2
0 1

)

find ∂u
∂x at (1, 1, 1).

3. Let X be a complete metric space and let Y be a subspace of X. Prove that Y is complete if and only if
it is closed.

4. Suppose f :K → R1 is a continuous function defined on a compact set K with the property that f(x) > 0
for all x ∈ K. Show that there exists a number c > 0 such that f(x) ≥ c for all x ∈ K.

5. Let f(x) be a continuous function on [0, 1] which satisfies
∫ 1

0
xnf(x) dx = 0 for all n = 0, 1, . . .



Prove that f(x) = 0 for all x ∈ [0, 1].

6. Show that the Riemann integral
∫ ∞
0

sin x
x dx exists.

7. Let
G(x, y) =

{

x(1 − y) if 0 ≤ x ≤ y ≤ 1
y(1 − x) if 0 ≤ y ≤ x ≤ 1

Let {fn(x)} be a uniformly bounded sequence of continuous functions on [0, 1] and consider the sequence

un(x) =
∫ 1

0
G(x, y)fn(y) dy.

Show that the sequence {un(x)} contains a uniformly convergent subsequence on [0, 1].

8. Let f be a real–valued function defined on an open set U ⊂ R
2 whose partial derivatives exist everywhere

on U and are bounded. Show that f is continuous on U .

9. For x ∈ R3 consider spherical coordinates x = rω where |ω| = 1 and |x| = r. Let ωk be the k’th component
of ω for any k = 1, 2, 3. Use the divergence theorem to evaluate the surface integral

∫

|ω|=1
ωk dS.

10. Let {fk} be a sequence of continuous functions defined on [a, b]. Show that if {fk} converges uniformly
on (a, b), then it also converges uniformly on [a, b].

11. Let f : Rn → Rk be a continuous mapping. Show that f(S) is bounded in Rk if S is a bounded set in Rn.
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January 2003

1. Consider a function f : R → R. Which of the following statements is equivalent to

the continuity of f at 0? (Provide justification for each of your answers.)

a) For every ε ≥ 0 there exists δ > 0 such that |x| < δ implies |f(x) − f(0)| ≤ ε.

b) For every ε > 0 there exists δ ≥ 0 such that |x| < δ implies |f(x) − f(0)| ≤ ε.

c) For every ε > 0 there exists δ > 0 such that |x| ≤ δ implies |f(x) − f(0)| ≤ ε.

2. Consider a uniformly continuous real-valued function f defined on the interval [0, 1).

Show that lim
t→1−

f(t) exists. Is a similar statement true if [0, 1) is replaced by [0,∞)?

3. Let f be a real-valued continuous function on [0, 1] such that f(0) = f(1). Show that

there exists x ∈ [0, 1/2] such that f(x) = f(x + 1/2).

4. If f is differentiable on [0, 1] with continuous derivative f ′, show that

∫ 1

0
|f(x)|dx ≤ max

{ ∣∣∣∣
∫ 1

0
f(x)dx

∣∣∣∣ ,

∫ 1

0
|f ′(x)|dx

}

5. Let f : R
2 → R be continuous and with compact support, i.e. there exists R > 0

such that f(x, y) = 0 if x2 + y2 ≥ R2.

a) Show that the integral

g(u, v) =

∫ ∫

R
2

f(x, y)√
(x − u)2 + (y − v)2

dxdy

converges for all (u, v) ∈ R
2, and show that g(u, v) is continuous in (u, v).

b) Show that, if in addition f has continuous first order partial derivatives, then so

does g and

∂g

∂u
(u, v) =

∫ ∫

R
2

∂f
∂x

(x, y)√
(x − u)2 + (y − v)2

dxdy .

1



6. Show that for any two functions f , g which have continuous second order partial

derivatives, defined in a neighborhood of the sphere S = {(x, y, z) ∈ R
3 : x2+y2+z2 =

1} in R
3, one has ∫

S

(∇f ×∇g) · dS = 0

where ∇f , ∇g are the gradient of f , g respectively.

7. Show that if {xn} is a bounded sequence of real numbers such that 2xn ≤ xn+1 +xn−1

for all n, then lim
n→∞

(xn+1 − xn) = 0.

8. For a non-empty set X , let R
X be the set of all maps from X to R. For f, g ∈ R

X ,

define

d(f, g) = sup
x∈X

|f(x) − g(x)|

1 + |f(x) − g(x)|
.

a) Show that (RX , d) is a metric space.

b) Show that fn → f in (RX , d) if and only if fn converges uniformly to f .

9. Show that if f : [0, 1] → R is continuous, and
1∫
0

f(x)x2ndx = 0, n = 0, 1, 2, · · · then

f(x) = 0 for all x ∈ [0, 1].

10. a) Let f : R
n → R be a differentiable function. Show that for any x, y ∈ R

n, there

exists z ∈ R
n such that

f(x) − f(y) = Df(z) · (x − y)

where Df(z) denotes the derivative matrix of f (in this case it is the same as the

gradient of f) at z, and “·” denotes the usual dot product in R
n.

b) Let f : R
n → R

n be a differentiable map. Show that if f has the property that

||Df(z) − I|| < 1
2n

for all z ∈ R
n, where I is the n × n identity matrix, then f is

a diffeomorphism, i.e. f is one-to-one, onto and f−1 is also differentiable. ( For a

matrix A = (aij), ||A|| = (
∑
i,j

a2
ij)

1/2. )

2







TIER 1 Analysis Exam January 2004

Instruction: Solve as many of these problems as you can. Be sure to justify all
your answers.

1. Let {pn}∞n=0 and {qn}∞n=0 be strictly increasing, integer valued, sequences.
Show that if for each integer n ≥ 1,

pn · qn−1 − pn−1 · qn = 1,

then the sequence of quotients pn/qn converges.

2. Consider the following system of equations

x · ey = u,

y · ex = v.

(a) Show that there exists an ϵ > 0 such that given any u and v with |u| < ϵ
and |v| < ϵ, the above system has a unique solution (x, y) ∈ R2.

(b) Exhibit a pair (u, v) ∈ R2 such that there exist two distinct solutions
to this system. Justify your answer.

3. Let f : R → R be a differentiable function such that f ′(a) < f ′(b) for some
a < b. Prove that for any z ∈ (f ′(a), f ′(b)), there is a c ∈ (a, b) such that
f ′(c) = z. Note: The derivative function f ′ may not be continuous.

4. Let f : R4 → R4 be continuously differentiable. Let Df(x) denote the
differential (or derivative) of f at the point x ∈ R4. Prove or provide
a counter-example: The set of points x where Df(x) has a null space of
dimension 2 or greater is closed in R4.

5. Let C([0, 1]) denote the collection of continuous real valued functions on
[0, 1]. Define Φ : C([0, 1]) → C([0, 1]) by

[Φ(f)](t) = 1 +

t∫
0

s2e−f(s)ds t ∈ [0, 1]

for f ∈ C([0, 1]). Define f0 ∈ C([0, 1]) by f0 ≡ 1 (i.e. the function of
constant value 1). Let fn = Φ(fn−1) for n = 1, 2, . . . .
(a) Prove that 1 ≤ fn(t) ≤ 1 + 1/3 for all t ∈ [0, 1] and n = 1, 2, . . ..
(b) Prove that

|fn+1(x) − fn(x)| <
1

3
sup

t∈[0,1]
|fn(t) − fn−1(t)|

for all x ∈ [0, 1] and for n = 1, 2, . . . . Hint: Show that |e−(x+δ) −
e−x| < δ for x > 0 and δ0.

(c) Show that the sequence of functions {fn} converges uniformly to some
function f ∈ C([0, 1]). Be sure to indicate any theorems that you use.

1
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6. Let I be a closed interval in R, and let f be a differentiable real valued
function on I, with f(I) ⊂ I. Suppose |f ′(t)| < 3/4 for all t ∈ I. Let x0 be
any point in I and define a sequence xn by xn+1 = f(xn) for every n > 0.
Show that there exists x ∈ I with f(x) = x and limxn = x.

7. Let

f(x, y) =

⎧⎨
⎩

xy

x2 + y
if x2 + y ̸= 0,

0 if x2 + y = 0.

(a) Show that f has a directional derivative (in every direction) at (0, 0),
and show that f is not continuous at (0, 0).

(b) Prove or provide a counterexample: If P1 : R2 → R2 and P2 : R2 →
R2 are any two functions such that P1(0, 0) = (0, 0) = P2(0, 0), and
such that f ◦Pi is differentiable at (0, 0), with nonvanishing derivative
at (0, 0) for i = 1, 2, then f ◦ (P1 + P2) is differentiable at (0, 0).

8. Let B = {(x, y, z) ∈ R3 | x2 + y2 + z2 ≤ 1} be the unit ball. Let v =
(v1, v2, v3) be a smooth vector field on B, which vanishes on the boundary
∂B of B and satisfies

div v(x, y, z) =
∂v1

∂x
+

∂v2

∂y
+

∂v3

∂z
= 0, ∀(x, y, z) ∈ B.

Prove that∫
B

xnv1(x, y, z)dxdydz = 0, ∀n = 0, 1, 2, · · · , .

9. Suppose that f : [0, 1] → R is a continuous function on [0, 1] with
1∫

0

f(x)dx =

1∫
0

f(x)(xn + xn+2)dx

for all n = 0, 1, 2, . . . . Show that f ≡ 0.

10. Suppose that f : [0, 1] → R has a continuous second derivative, f(0) =
f(1) = 0, and f(x) > 0 for all x ∈ (0, 1). Prove that∫ 1

0

∣∣∣∣f
′′(x)

f(x)

∣∣∣∣ dx > 4.



Tier I Analysis Exam-August 2004
1. (A) Suppose A and B are nonempty, disjoint subsets of Rn such

that A is compact and B is closed. Prove that there exists a pair of
points a ∈ A and b ∈ B such that

∀x ∈ A, ∀y ∈ B, ∥x − y∥ ≥ ∥a − b∥ .

Prove this fact from basic principles and results; do not simply cite
a similar or more general theorem. Here and in what follows, ∥.∥
denotes the usual Euclidean norm: for x = (x1, x2, . . . , xn) ∈ Rn,
∥x∥ = (x2

1 + x2
2 + · · ·+ x2

n)1/2.

(B) Suppose that in problem (A) above, the assumption that the set
A is compact is replaced by the assumption that A is closed. Does the
result still hold? Justify your answer with a proof or counterexample.

2. (A) Prove the following classic result of Cauchy: Suppose r(1), r(2),
r(3), . . . is a monotonically decreasing sequence of positive numbers.
Then

∑∞
k=1 r(k) < ∞ if and only if

∑∞
n=1 2nr(2n) < ∞.

(B) Use the result in part (A) to prove the following theorem: Sup-
pose a1, a2, a3, . . . is a monotonically decreasing sequence of positive
numbers such that

∑∞
n=1 an = ∞. For each n ≥ 1, define the positive

number cn = min{an, 1/n}. Then
∑∞

n=1 cn = ∞.

3. Suppose g : [0,∞) → [0, 1] is a continuous, monotonically in-
creasing function such that g(0) = 0 and limx→∞ g(x) = 1.

Suppose that for each n = 1, 2, 3, . . . , fn : [0,∞) → [0, 1] is a mono-
tonically increasing (but not necessarily continuous) function. Suppose
that for all x ∈ [0,∞), limn→∞ fn(x) = g(x). Prove that fn → g uni-
formly on [0,∞) as n → ∞.

1
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4. Let x ∈ R3 and let f(x) ∈ C1(R3). Further let n = x/∥x∥ for
x ̸= 0. Show that the surface integral

I ≡

∫
∥x∥=1

f(x) dSx

can be expressed in the form of a volume integral

I =

∫
∥x∥<1

(
2

∥x∥
f(x) + n ·∇f(x)

)
dx .

Hint: Write the integrand in I as n · (nf).

5. Let x0 ∈ R and consider the sequence defined by

xn+1 = cos(xn) (n = 0, 1, . . .)

Prove that {xn} converges for arbitrary x0.

6. Let α > 0 and consider the integral

Jα =

∫ ∞

0

e−x

1 + αx
dx .

Show that there is a constant c such that

α1/2Jα ≤ c .

7. Consider the infinite series
∞∑

n=1

Xn(x)Tn(t)

where (x, t) varies over a rectangle Ω = [a, b] × [0, τ ] in R2. Assume
that

(i) The series
∑∞

n=1 Xn(x) converges uniformly with respect to x ∈
[a, b];

(ii) There exists a positive constant c such that |Tn(t)| ≤ c for every
positive integer n and every t ∈ [0, τ ];

(iii) For every t such that t ∈ [0, τ ], T1(t) ≤ T2(t) ≤ T3(t) ≤ . . .

Prove that
∑∞

n=1 Xn(x)Tn(t) converges uniformly with respect to both
variables together on Ω.

Hint: Let SN =
∑N

n=1 Xn(x)Tn(t), sN =
∑N

n=1 Xn(x). For m > n
find an expression for Sm − Sn involving (sk − sn) for an appropriate
range of values of k.



3

8. Let v(x) ∈ C∞(R) and assume that for each γ in a neighborhood
of the origin there exists a function u(x, v, γ) which is C∞ in x such
that

γ
∂

∂x
(u + v) = sin(u − v) .

Assuming that

u = u0 + γu1 + γ2u2 + γ3u3 + . . .

where u0(0) = v(0) and for all n the un’s are functions of v but are
independent of γ, find u0, u1, u2 and u3.

9. All partial derivatives ∂m+nf/∂xm∂yn of a function f : R2 → R

exist everywhere. Does it imply that f is continuous? Prove or give a
counterexample.

10. Decide whether the two equations

sin(x + z) + ln(yz2) = 0 , ex+z + yz = 0 ,

implicitly define (x, y) near (1, 1) as a function of z near −1.



Tier I exam in analysis - January 2005

Solve all problems. Justify your answers in detail. The exam’s duration is 3 hours

1. Define

S = {(x, y, z) 2 R3, x2 + 2y2 + 3z2 = 1}, f(x, y, z) = x + y + z.

a. Prove that S is a compact set.

b. Find the maximum and minimum of f on S.

2. Let g : [0, 1] £ [0, 1] ! R be a continuous function, and define functions f
n

:
[0, 1]! R by

f
n

(x) =
Z 1

0
g(x, y)yn dy x 2 [0, 1], n = 1, 2, . . .

Show that the sequence (f
n

)1
n=1 has a subsequence which converges uniformly on

[0, 1].

3. Consider the subset H = {(a, b, c, d, e)} of R5 such that the polynomial

ax4 + bx3 + cx2 + dx + e

has at least one real root.

a. Prove that (1, 2,°4, 3,°2) is an interior point of H

b. Find a point in H that is not an interior point. Justify your claim.

4. Consider a twice diÆerentiable function f : R ! R, a number a 2 R, and h > 0.
Show that there exists a point c 2 R such that

f(a)° 2f(a + h) + f(a + 2h) = h2f 00(c).

5. Prove or give a counterexample: If f(x) is diÆerentiable for every x 2 R, and if
f

0
(0) = 1, then there exists ± > 0 such that f(x) is increasing on (°±, ±).

1



6. Let f(x) be a bounded function on (0, 2). Suppose that for every x, y 2 (0, 2), x 6=
y, there exists z 2 (0, 2) such that

f(x)° f(y) = f(z)(x° y).

a. Show that f need not be a diÆerentiable function.

b. Suppose that such a z can always be found between x and y. Show that f is
twice diÆerentiable.

7. Consider the torus

T = {x = (a + r sin u) cos v, y = (a + r sin u) sin v, z = r cos u,

0 ∑ r ∑ b, 0 ∑ u ∑ 2º, 0 ∑ v ∑ 2º},

where a > b. Find the volume and surface area of T .

8. Let ≠ be a bounded subset of Rn, and f : ≠! Rn a uniformly continuous function.
Show that f must be bounded.

2



Outline of Solutions:

1. a. It su±ces to show that S is closed and bounded. Closeness follows since
S = {h°1(1)}, for a continuous function h. Boundedness follows since clearly S is
contained in the cube [°1, 1]3.

b. Both maximum and minimum are obtained at internal points on S, and can
therefore be found by the Lagrange method. The Lagrange equations imply at
once that ∏ 6= 0, and 1

2∏

= x = 2y = 3z. Solving from S we find that the maximal

value is
q

11/6, and the minimal value is its negative.

2. f
n

(0) = 0, and the functions f
n

are equicontinuous because

|f
n

(x)° f
n

(x0)| ∑ sup
y

|g(x, y)° g(x0, y)|,

and this quantity tends to zero as |x ° x0| ! 0 by the continuity of g. This
Arzela-Ascoli applies.

3. Write the polynomial x4 + 2x3 ° 4x2 + 3x ° 2. Obviously x = 1 is a root, so the
triplet is indeed in H.

Define the function F (a, b, c, d, e, f, x) = ax4 + bx3 + cx2 + ed + f . Clearly
F (1, 2,°4, 3,°2, 1) = 0, while F

x

= 5 6== 0 at that point. Therefore there
exists an open neighborhood U of (1, 2,°4, 3,°2) and a C1 function g such that
for all points (a, b, c, d, e) in U we have F (a, b, c, d, e, g(a, b, c, d, e)) = 0.

Clearly (0, 0, 1, 0, 0) is in H. But the the points (0, 0, 1, 0, µ2) are not in the set
for µ 6= 0 (Since x2 + µ2 has no real root).

4. Apply the mean-value theorem to the function F (x) = f(x + h)° f(x) to get

f(a)° 2f(a + h) + f(a + 2h) = F (a + h)° F (a) = hF 0(d) = h(f 0(d + h)° f 0(d))

for some d, then apply MVT again to the right-hand side.

5. Counterexmaple - f(x) = x + 2x2 sin(1/x).

6. a. Let f = x for 0 ∑ x ∑ 1, and f = 1 for 1 ∑ x ∑ 2.

Since f is bounded, lim
y!x

f(y) = f(x). Furthermore, lim
x!y

f(y)°f(x)
x°y

= f(y).

Therefore f is diÆerentiable. Also, the last identity implies f
0
= f , thus f(x) =

cex.

7. The Jacobian is given by J = r(a + sin u), and hence V = 2º2ab2. Observing that
the boundary is given by r = b, a simple computation gives ||N || = ||T

u

£ T
v

|| =
b(a + b sin u). Therefore S = 4º2ab. Of course, it is also possible to solve with the
slice method.

8. Choose ± > 0 such that |f(x)° f(y)| < 1 whenever |x° y| < ±. Assume that f is
not bounded, and choose x

k

2 ≠ such that |f(x
k+1)| > |f(x

k

)|+1 for all k. Observe
that |f(x

j

) ° f(x
k

)| > 1 whenever j 6= k. However, by Bolzano-Weierstrass, we
must have |x

j

° x
k

| < ± for some j 6= k, which gives a contradiction.
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TIER 1 ANALYSIS EXAM
AUGUST 2007

(1) Define f : R2 ! R by setting

f(x, y) =

x

3
+ y

3

x

2
+ y

2

for (x, y) 6= (0, 0) and f(0, 0) = 0. Show that is di↵erentiable

at all points (x, y) 2 R2
except (0, 0). Show that f is not

di↵erentiable at (0, 0).

(2) Given � 2 R, define h� : R2 ! R by

h�(x, y) = �x

4
+ x

2
+ y

2
+ � · sin(x · y).

For which values of � does h� have a local minimum at (0, 0)?

Justify your answer.

(3) Let � ⇢ R2
be the simple closed curve described in polar coor-

dinates by r = cos(2✓) where ✓ 2 [�⇡/4, ⇡/4]. Suppose that �

is positively oriented. Compute the line integral

Z

�

3y dx + x dy.

Provide the details of your computation.

(4) Let X be a metric space such that d(x, y)  1 for every x, y 2 X,

and let f : X ! R be a uniformly continuous function. Does

it follow that f must be bounded? Justify your answer with

either a proof or a counterexample.

(5) Let

f(x, y) = (x + e

2y � 1, sin(x

2
+ y)),

and let

h(x, y) = (1 + x)

5 � e

4y
.

Show that there exists a continuously di↵erentiable function

g(x, y) defined in a neighborhood of (0, 0) such that g(0, 0) = 0

and g � f = h. Compute

@g
@y (0, 0).

1



2 TIER 1 ANALYSIS EXAM AUGUST 2007

(6) Let c1, c2, . . . be an infinite sequence of distinct points in the

interval [0, 1]. Define f : [0, 1] ! R by setting f(x) = 1/n if

x = cn and f(x) = 0 if x /2 {cn}. State the definition of a

Riemann integrable function, and directly use this definition to

show that Z 1

0

f(x) dx

exists.

(7) Show that the formula

g(x) =

1X

n=1

1

n

2
e

R
x

0 t sin(n

t

) dt

defines a function g : R ! R. Prove that g is continuously

di↵erentiable.

(8) Consider an unbounded sequence 0 < a1 < a2 < · · · , and set

s = lim sup

n!1

log n

log an
.

Show that the series

1X

n=1

a

�t
n

converges for t > s and diverges for t < s.

(9) Define a sequence {an} by setting a1 = 1/2 and an+1 =

p
1� an

for n � 2. Does the sequence an converge? If so, what is the

limit? Justify your answer with a proof.







TIER I ANALYSIS EXAM

August 2008

Do all 10 problems; they all count equally.

Problem 1. Suppose that I1, . . . , In

are disjoint closed subinter-

vals of R. If f is uniformly continuous on each of the intervals, prove

that f is uniformly continuous on

S
n

j=1 I

j

.

Does this still hold if the intervals are open?

Problem 2. Suppose that f is a continuous function from [0, 1]

into R and that

R 1

0 f(x) dx = 0.

Prove that there is at least one point, x0, in [0, 1], where f(x0) = 0.

Does this still hold if f is Riemann integrable but not continuous?

Problem 3. Suppose that f is a continuous function from [a, b]

into R which has the property that, for any point x 2 [a, b], there is

another point x

0 2 [a, b] such that |f(x

0
)| ∑ |f(x)|/2.

Prove that there exists a point x0 2 [a, b] where f vanishes, that is,

f(x0) = 0.

Problem 4. Define f : R2 ! R2
and g : R2 ! R2

by

f(x, y) = (sin(y)° x, e

x ° y) , g(x, y) = (xy, x

2
+ y

2
) .

Compute (g ± f)

0
(0, 0).

Problem 5. Prove that there exists a positive number µ0 such

that the following holds: For each µ 2 [0, µ0], there exist real numbers

x and y (with xy > °1) such that

2x + y + e

xy

= cos(µ

3
) , and log(1 + xy) + sin(x + y

2
) =

p
µ .

(Hint : First evaluate the left side of each of these two equations for

x = y = 0.)

Problem 6. If

P1
n=0 a

n

and

P1
n=0 b

n

are absolutely convergent

series of real numbers it is well-known that their Cauchy product seriesP1
n=0 c

n

also converges, where

c

n

= a0bn

+ a1bn°1 + · · · + a0bn

, n = 0, 1, . . . .

Show that this assertion is no longer true if

P1
n=0 a

n

and

P1
n=0 b

n

are merely conditionally convergent.



Problem 7. (a.) Let C be the line segment joining the points

(x1, y1) and (x2, y2) in R2
.

Prove that

R
C

x dy ° y dx = x1y2 ° x2y1.

(b.) Suppose further that (x1, y1), . . . , (xn

, y

n

) are vertices of a poly-

gon in R2
, in counterclockwise order.

Prove that the area of the polygon is equal to

1

2

[(x1y2 ° x2y1) + (x2y3 ° x3y2) + · · · + (x

n

y1 ° x1yn

)] .

Problem 8. Prove that there exist a positive integer n and real

numbers a0, a1, . . . , an

such that

ØØØ
≥ nX

k=0

a

k

x

k

¥
° exp

≥
sin(e

x

)p
x

¥ØØØ ∑ 10

°6
for all x 2 [1,1) .

Problem 9. Prove that the series

P1
n=1 n

°x

can be diÆerentiated

term by term on its interval of convergence.

Problem 10. Suppose that, for each positive integer n,

f

n

: [0, 1]! R
is a continuous function that satisfies f

n

(0) = 0 and has a continuous

derivative f

0
n

on (0, 1) such that |f 0
n

(x)| ∑ 9000 for all x 2 (0, 1).

Prove that there exists a subsequence f

n1 , fn2 , fn3 , . . . such that the

following holds:

For every Riemann integrable function g : [0, 1] ! R, there exists a

real number L (which may depend on the function g) such that

lim

k!1

Z 1

0

g(x) f

nk
(x) dx = L .

(Note. You may take for granted and freely use standard basic facts

about Riemann integrals, including, e.g. the fact that a Riemann in-

tegrable function is bounded, and that linear combinations, products,

and absolute values of Riemann integrable functions are Riemann in-

tegrable.)



Tier I Analysis Exam

January 2009

Try to work all questions. They all are worth the same amount.

1. Assume f and g are uniformly continuous functions from R1 ! R1
. If both f and g

are also bounded, show that fg is also uniformly continuous. Then give an example to

show that in general, if f and g are both uniformly continuous but not both bounded,

then the product is not necessarily uniformly continuous. (Verify clearly that your

counter-example is not uniformly continuous.)

2. Suppose f : R ! R and g : R ! R are C2
functions, h : R2 ! R is a C1

function and

assume

f(0) = g(0) = 0, f 0(0) = g0(0) = h(0, 0) = 1.

Show that the function H : R2 ! R given by

H(x, y) :=

Z f(x)

0

Z g(y)

0

h(s, t) ds dt +

1

2

x2
+ by2

has a local minimum at the origin provided that b > 1
2 while it has a saddle at the origin

if b < 1
2 .

3. Let H = {(x, y, z) | z > 0 and x2
+ y2

+ z2
= R2}, i.e. the upper hemisphere of the

sphere of radius R centered at 0 in R3
. Let F : R3 ! R3

be the vector field

F (x, y, z) =

n

x2
(y2 � z3

), xzy4
+ e�x2

y4
+ y, x2y(y2x3

+ 3)z + e�x2�y2
o

Find

Z

H

F · n̂ dS where n̂ is the outward (upward) pointing unit surface normal and dS

is the area element.

4. Let D be the square with vertices (2,2), (3,3), (2,4), (1,3). Calculate the improper

integral

Z Z

D

ln(y2 � x2
)dxdy .



5. Suppose f : R2 ! R1
is a C4

function with the property that at some point (x0, y0) 2 R2

all of the first and second order partial derivatives of f vanish. Suppose also that at

least one partial derivative of third order does not vanish at (x0, y0). Prove that f can

have neither a local maximum nor a local minimum at this critical point.

6. Prove that the series

1
X

n=1

nx

1 + n2
log

2
(n)x2

converges uniformly on [",1) for any " > 0.

7. Suppose that f : R3 ! R is of class C1
, that f(0, 0, 0) = 0, and

f2(0, 0, 0) 6= 0, f3(0, 0, 0) 6= 0, and f2(0, 0, 0) + f3(0, 0, 0) 6= �1

where fk =

@f
@xk

. Show that the system

f(x1, f(x1, x2, x3), x3) = 0

f(x1, x2, f(x1, x2, x3)) = 0

defines C1
functions x2 = '(x1), and x3 =  (x1) for x1 in a neighborhood of 0 satisfying

f(x1, f(x1,'(x1), (x1)), (x1)) = 0

f(x1,'(x1), f(x1,'(x1), (x1))) = 0.

8. For each b 2 [1, e], consider the sequence of real numbers governed by the recurrence

relation

an+1 =

⇣

b
p

b
⌘an

for n = 0, 1, 2 . . . with a0 =

b
p

b i.e. { b
p

b,
b
p

b
bp

b
,

b
p

b
bp

b
bpb

,
b
p

b
bp

b
bpb

bpb

, . . . }.

Show that this sequence converges and find the limit.



9. For each positive integer n, define xn : [�1, 1]! R by

xn(t) =

8

>

>

>

>

>

<

>

>

>

>

>

:

�1 if � 1  t  �1/n

nt if � 1/n < t < 1/n

1 if 1/n  t  1

(a) Show that {xn} is a Cauchy sequence in the metric space (C([�1, 1]), d), where

C([�1, 1]) denotes the set of continuous functions defined on [�1, 1] and d denotes the

metric given by

d(x, y) =

Z 1

�1

|x(t)� y(t)| dt .

(b) Show that (C([�1, 1]), d) is not complete.



Tier 1 Analysis Exam

August, 2009

Show all work, and justify all answers.

This exam has 9 problems.

R will denote the real numbers, and || · || will denote the usual Euclidean norm.

1. Define the statement: “f : R2 → R is differentiable at (0, 0),” and show that the
function f(x, y) = x|y|

1
2 is differentiable at (0, 0).

2. Show that the series

2 sin
1

3x
+ 4 sin

1

9x
+ · · ·+ 2n sin

1

3nx
+ · · ·

converges absolutely for x ̸= 0 but does not converge uniformly on any interval (0, ϵ) with
ϵ > 0.

3. Let V (n, r) be the volume of the ball {x ∈ Rn : ||x|| ≤ r}.

(a) Show that V (n, r) = cnrn for some constant cn depending only on n.

(b) Find limn→∞ cn.

4. Suppose that x ̸= 0. Show that

lim
n→∞

1 + cos(x/n) + cos(2x/n) + · · · + cos((n − 1)x/n)

n
=

sin(x)

x

5. Let X = {x = (x1, x2, x3, x4) ∈ R4 : x2
1 +x2

2 +x2
3 −x2

4 = 2, and x1 +x2 +x3 +x4 = 2}.
For which points p ∈ X is it possible to find a product of open intervals V = I1×I2×I3×I4

containing p such that X∩V is the graph of a function expressing some of the variables x1,
x2, x3, x4 in terms of the others? If there are any points in X where this is not possible,
explain why not.

1



6. Let a and b be two points of R2. Let σn : [0, 1] → R2 be a sequence of continuously
differentiable constant speed curves with ||σ′

n(t)|| = Ln for all t ∈ [0, 1] and σn(0) = a
and σn(1) = b for all n. Suppose that limn→∞ Ln = ||b − a||. Show that σn converges
uniformly to σ, where σ(t) = a + t(b − a) for t ∈ [0, 1].

7. Let f : R → R be a function; and let its n-th derivative, denoted f (n), exist for all n.
Suppose that the sequence f (n), n = 1, 2, 3, . . . converges uniformly on compact subsets to
a function g. Show that there is a constant c such that g(x) = c ex.

8. Let M = {(x, y, z) ∈ R3 : y = 9−x2, y ≥ 0, and 0 ≤ z ≤ 1}. Orient M so that the unit
normal n⃗ is in the positive y-direction along the line x = 0, y = 3. Let F⃗ be the vector
field on R3 given by F⃗ = (2x3yz, y + 3x2y2z,−6x2yz2).
(a) What is div F⃗?
(b) Use the Divergence Theorem to express the flux of F⃗ across M (that is,

∫
M

F⃗ · n⃗ dS,
where dS is the surface area element) in terms of some other (easier) integrals.

(c) Calculate
∫

M
F⃗ · n⃗ dS by evaluating the integrals in part (b).

9. Let (X, d) be a compact metric space. Suppose that h : X → Y ⊂ X is a map which
preserves d, or in other words, d(h(x1), h(x2)) = d(x1, x2) for all x1, x2 ∈ X . Show that
Y = X .

2



Department of Mathematics–Tier 1 Analysis Examination

January 7, 2010

Notation: In problems 2, 3, and 9 the notation rf denotes the n�tuple of first-order partial derivatives of

a function f mapping an open set in R

n
into R.

1. Let E be a closed and bounded set in R

n
and let f : E ! R. Suppose that for each x 2 E there are

positive numbers r and M depending on x such that f(y) � �M for all y 2 E satisfying |y � x| < r.

Prove that there is a positive number M such that f(y) � �M for all y 2 E.

2. Let V be a convex open set in R

2
and let f : V ! R be continuously di↵erentiable in V . Show that if

there is a positive number M such that |rf(x)| M for all x 2 V , then there is a a positive number L

such that

|f(x)� f(y)|  L|x� y|
for all x, y 2 V .

Is this result still true if V is instead assumed to be open and connected? Prove or disprove with a

counterexample.

3. Let f be a C

2
mapping of a neighborhood of a point x0 2 R

n
into R. Assume that x0 is a critical point

of f and that the second derivative matrix f

00
(x0) is positive definite. Prove that there is a neighborhood

V of x0 such that zero is an interior point of the set {rf(y) : y 2 V }.
4. Suppose that F and G are di↵erentiable maps of a neighborhood V of a point x0 2 R

n
into R and that

F (x0) = G(x0). Next let f : V ! R and suppose that F (x)  f(x)  G(x) for all x 2 V . Prove that f

is di↵erentiable at x = x0.

5. Let {gk}1k=1 be a sequence of continuous real-valued functions on [0, 1]. Assume that there is a number

M such that |gk(x)| M for every k and every x 2 [0, 1] and also that there is a continuous real-valued

function g on [0, 1] such that

Z 1

0
gk(x)p(x)dx!

Z 1

0
g(x)p(x)dx as k !1

for every polynomial p. Prove that |g(x)| M for every x 2 [0, 1] and that

Z 1

0
gk(x)f(x)dx!

Z 1

0
g(x)f(x)dx

for every continuous f .

6. Let {ak} be a sequence of positive numbers converging to a positive number a. Prove that (a1a2 · · · ak)

1/k

also converges to a.

7. Compute rigorously lim

n!1

"
1

n +

p
n

nX

k=1

sin

✓
k

n

◆#
.

8. Let {ak}1k=1 be a sequence of numbers satisfying |ak|  k

2
/2

k
for all k and let f : [0, 1] ⇥R ! R be

continuous. Prove that the following limit exists:

lim

n!1

Z 1

0
f

�
x,

nX

k=1

akx

k
�
dx .

9. Let g : R

2 ! (0,1) be C

2
and define ⌃ ⇢ R

3
by ⌃ = {(x1, x2, g(x1, x2)) : x

2
1 +x

2
2  1}. Assume that ⌃

is contained in the ball B of radius R centered at the origin in R

3
and that each ray through the origin

intersects ⌃ at most once. Let E be the set of points x 2 @B such that the ray joining the origin to x

intersects ⌃ exactly once. Derive an equation relating the area of E, R, and the integralZ

⌃
r�(x) · N(x)dS

where �(x) = 1/|x|, N(x) is a unit normal vector on ⌃, and dS represents surface area.



Tier I Analysis Exam
August, 2010

• Be sure to fully justify all answers.

• Scoring: Each one of the 10 problems is worth 10 points.

• Please write on only one side of each sheet of paper. Begin each problem
on a new sheet, and be sure to write a problem number on each sheet of
paper.

• Please be sure that you assemble your test with the problems presented in correct
order.

(1) Let A and B be bounded sets of positive real numbers and let AB = {ab | a ∈ A, b ∈ B}.
Prove that supAB = (sup A)(sup B).

(2) A function f : R → R is called proper if f−1(C) is compact for every compact set C.
Prove or give a counterexample: if f and g are continuous and proper, then the product
fg is proper.

(3) (a) Prove or give a counterexample: If f : R → R is a differentiable function and
f(x) > x2 for all x, then given any M ∈ R there is an x0 such that |f ′(x0)| > M .

(b) Prove or give a counterexample: If f : R2 → R2 is a differentiable function and
||f(x, y)|| > ||(x, y)||2 for all (x, y), then given any M ∈ R there is an (x0, y0) ∈ R2

such that |det(Df(x0, y0))| > M .

(4) Suppose that {fn} is a sequence of continuous functions defined on the interval [0, 1]
converging uniformly to a function f0. Let {xn} be a sequence of points converging to
a point x0 with the property that for each n, fn(xn) ≥ fn(x) for all x ∈ [0, 1]. Prove
that f0(x0) ≥ f0(x) for all x ∈ [0, 1].

(5) Let f be continuous at x = 0, and assume

lim
x→0

f(2x) − f(x)

x
= L.

Prove that f ′(0) exists and f ′(0) = L.

(6) Let R = {(x, y) | 0 ≤ x, 5|y| ≤ 3|x|, x2 − y2 ≤ 1}, a compact region in R2. For
some region S ⊂ R2, the function F : S → R given by F (r, θ) = (r cosh θ, r sinh θ)
is one-to-one and onto. Determine S and use this change of variable to compute the
integral ∫∫

R

dx dy

1 + x2 − y2
.

(Recall that cosh θ = eθ+e−θ

2 and sinh θ = eθ−e−θ

2 .)



(7) Let d(x) = minn∈Z |x − n|, where Z is the set of all integers.

(a) Prove that f(x) =
∑∞

n=0
d(10nx)

10n is a continuous function on R.

(b) Compute explicitly the value of
∫ 1
0 f(x)dx.

(8) Suppose f and ϕ are continuous real valued functions on R. Suppose ϕ(x) = 0 whenever
|x| > 5, and suppose that

∫
R

ϕ(x)dx = 1. Show that

lim
h→0

1

h

∫
R

f(x − y)ϕ
( y

h

)
dy = f(x)

for all x ∈ R.

(9) Let f(x, y, z) and g(x, y, z) be continuously differentiable functions defined on R3. Sup-
pose that f(0, 0, 0) = g(0, 0, 0) = 0. Also, assume that the gradients ∇f(0, 0, 0) and
∇g(0, 0, 0) are linearly independent. Show that for some ϵ > 0 there is a differentiable
curve γ : (−ϵ, ϵ) → R3 with nonvanishing derivative such that γ(0) = (0, 0, 0) and
f(γ(t)) = g(γ(t)) = 0 for all t ∈ (−ϵ, ϵ).

(10) Let S = {(x, y, z) ∈ R3 | x2 + y2 ≤ 1 and z = ex2+2y2

}. So, S is that part of the
surface described by z = ex2+2y2

that lies inside the cylinder x2 + y2 = 1. Let the path
C = ∂S. Choose (specify) an orientation for C and compute

∫

C

(−y3 + xz)dx + (yz + x3)dy + z2dz .



•
•

|x| =

q
x

2
1 + x

2
2 + · · · + x

2
n

x = (x1, x2, . . . , xn

) 2 Rn

f :

[0, 1]! Rn

����
1

0
f(t) dt

���� 
1

0
|f(t)| dt.

A

n

=


a

n

b

n

c

n

d

n

�
, n � 1,

(a

n

)

1
n=1, (bn

)

1
n=1, (cn

)

1
n=1,

(d

n

)

1
n=1 A =


a b

c d

�

A

n

= A� 1

3!

A

3
+ · · · + (�1)

n

(2n + 1)!

A

2n+1
, n � 1.

(A

n

)

1
n=1 sin(A)

f : R ! R
n x, y 2 R |x| + |y| > n

2

|x � y| < 1/n

2 |f(x) � f(y)| < 1/n f

c(t) = (3 cos t� cos(3t), 3 sin t� sin(3t)), t 2 [0, 2⇡].

{(x, y, z) :

p
x+

p
y+

p
z  1, x, y, z � 0}.

f : [0, 1]! [0, 1]

a 2 [0, 1] f(a) = a

f

0
(a) < �1 (x

n

)

1
n=0

x0 = 0 x

n+1 = f(x

n

) n � 0 (x

n

)

1
n=0

f(x)

x0 =

p
2 x

f(x)
= f(x).

f

n

: [0, 1] ! [0, 1] g

n

:

[0, 1]! R

g

n

(x) =

1

0

f

n

(t)

(t� x)

1/3
dt, x 2 [0, 1].

(g

n

)

n2N



(a

n

)

1
n=1 |

P
n

k=1 a

k

| 
p

n n � 1

1X

k=1

a

k

k

I

n

= [a

n

, b

n

], n = 1, 2, . . .S
n

I

n

= [0, 1]



Tier 1 Analysis Exam: August 2011

Do all nine problems. They all count equally. Show all computations.

1. Let (X, d) be a compact metric space. Let f : X ! X be continuous. Fix a point
x0 2 X, and assume that d(f(x), x0) ∏ 1 whenever x 2 X is such that d(x, x0) = 1. Prove
that U \ f(U) is an open set in X, where U = {x 2 X : d(x, x0) < 1}.

2. Let f1 : [a, b] ! R be a Riemann integrable function. Define the sequence of functions
f

n

: [a, b]! R by

f

n+1(x) =

Z
x

a

f

n

(t)dt,

for each n ∏ 1 and each x 2 [a, b]. Prove that the sequence of functions

g

n

(x) =
nX

m=1

f

m

(x)

converges uniformly on [a, b].

3. Let f : R2 ! R be diÆerentiable everywhere. Assume f(°
p

2,°
p

2) = 0, and also that

ØØØØ
@f

@x

(x, y)

ØØØØ ∑ | sin(x2 + y

2)|

ØØØØ
@f

@y

(x, y)

ØØØØ ∑ | cos(x2 + y

2)|

for each (x, y) 2 R2 \ {(0, 0)}. Prove that

|f(
p

2,
p

2)| ∑ 4.

4. Let q1, q2, . . . be an indexing of the rational numbers in the interval (0, 1). Define the
function f(x) : (0, 1) °! (0, 1), by

f(x) =
X

j:qj<x

2°j

.

(Here the sum is over all positive integers j such that q

j

< x.)

a. Show that f is discontinuous at every rational number in (0, 1).

b. Show that f is continuous at every irrational number in (0, 1).

1



5. Show that the map © : R2 ! R2 given by

©(µ, ¡) = (sin ¡ · cos µ, sin ¡ · sin µ),

is invertible in a neighborhood of (µ0,¡0) = (º

6 ,

º

4 ) and find the partial derivatives of the

inverse at the point (
p

6
4 ,

p
2

4 ).

6. Let A be a domain in R

2 whose boundary ∞ is a smooth, positively oriented curve.

a. Find a particular pair of functions P : R2 ! R and Q : R2 ! R so that
R

∞

Pdx + Qdy

equals the area of the domain A.

b. Let |A| be the area of A. Find a function R : R2 ! R so that

1

|A|

Z

∞

Rdx + Rdy,

equals the average value of the square of the distance from the origin to a point of A.

7. Let C be a smooth simple closed curve that lies in the plane x + y + z = 1. Show that
the line integral Z

C

zdx° 2xdy + 3ydz

depends only on the orientation of C and on the area of the region enclosed by C but not
on the shape of C or its location in the plane.

8. For each x = (x, y, z) 2 R3 define |x| =
p

x

2 + y

2 + z

2. Consider

F (x) =
x

|x|∏ , x 6= 0,∏ > 0 .

(i) Is there a value of ∏ for which F is divergence free?
(ii) Let E : R3 ! R3 be defined by

E(y) = q

y

|y|3

where q is a positive real number. Let S(x, a) denote the sphere of radius a > 0 centered at
x. Assume |x| 6= a. Compute Z

S(x,a)

E · n dA

where dA is the surface area element and n is the unit outward normal on S(x, a).

9. Let x1 2 R. Define the sequence (x
n

)
n∏2 by

x

n+1 = x

n

+

p
|x

n

|
n

2
,

for each n ∏ 1. Show that x

n

is convergent.

2



(x, y) 2 R2
,

f(x, y) =

(
[(2x

2 ° y)(y ° x

2)]1/4
, x

2 ∑ y ∑ 2x

2;
0,

f (0, 0), f

(0, 0).

an)1n=1 P1
n=1 an < 1. limn!1 nan = 0.

(x, y) 2 R2
, f(x, y) = 5x

2 +xy

3°3x

2
y.

f,

Z 1

0
sin(x2) dx.

(fn)1n=1 gn)1n=1 R R

Fn =
Pn

k=1 fk

gn ! 0
g1(x) ∏ g2(x) ∏ g3(x) ∏ · · · , x 2 R.

P1
n=1 fngn

qX

p

fngn =
q°1X

p

Fn(gn ° gn+1) + Fqgq ° Fp°1gp.



X = {(x1, x2, x3, x4) 2 R4 : x

4
1+x

4
2+x

4
3+x

4
4 = 64 x1+x2+x3+x4 = 8}.

p 2 X

V = I1 £ I2 £ I3 £ I4 p X \ V

x1, x2, x3, x4

X

F : R2 \ {(0, 0)}! R2

F(x, y) =
µ

°y

x

2 + y

2
,

x

x

2 + y

2

∂

j = 1, 2 C

1
∞j : [0, 1] ! R2

,

∞j(0) = p ∞j(1) = q p, q 2 R2 \ {(0, 0)}.
∞j(t) 6= (0, 0) ∞

0
j(t) 6= 0 t 2 [0, 1],

∞1((0, 1)) \ ∞2((0, 1)) = ;.
Z

°1

F · T1 ds =
Z

°2

F · T2 ds + 2ºk, k = 0, 1 ° 1,

°j := ∞j([0, 1]) Tj ∞j s

¡ : R2 ! R C

1
g : R2 \ {(0, 0)} ! R

g(x, y) := ln
°p

x

2 + y

2
¢
.

lim
≤!0

Z

@B≤

(¡rg · n° gr¡ · n) ds = 2º¡(0, 0),

B≤ (0, 0) ≤ n
@B≤.

Æ 2 (0, 1]. f : [0, 1] ! R Æ

NÆ(f) := sup
Ω

|f(x)° f(y)|
|x° y|Æ : x, y 2 [0, 1], x 6= y

æ
<1.

(fn)1n=1 [0, 1] R
n = 1, 2, . . . NÆ(fn) ∑ 1 |fn(x)| ∑ 1

x 2 [0, 1]. (fn)1n=1

NÆ(fn) ∑ 1
NÆ(fn) <1



f : Rn ! R

x0 x1 2 Rn
f(x0) = 0 f(x1) = 3,

C1 C2 f(x) ∏ C1|x|°C2

x 2 Rn
.

S := {x 2 Rn : f(x) < 2} K := {x 2 Rn : f(x) ∑ 1}.
K @S S)

(K, @S) := inf
p2K,q2@S

|p° q|.

(K, @S) > 0.

f (K, @S) = 0.



August 2012 Tier 1 Analysis Exam

• Be sure to fully justify all answers.
• Scoring: Each one of the 10 problems is worth 10 points.
• Please write on only one side of each sheet of paper. Begin each problem on a

new sheet, and be sure to write the problem number on each sheet of paper.
• Please be sure that you assemble your test with the problems presented in the

correct order.

1. Let

fn(x) =
n∑

k=1

(xk − x2k).

(a) Show that fn converges pointwise to a function f on [0, 1].

(b) Show that fn does not converge uniformly to f on [0, 1].

2. Define f : R2 → R by f(x, y) =
y3 − sin3 x

x2 + y2
if (x, y) ̸= (0, 0) and f(0, 0) = 0.

(a) Compute the directional derivative of f at (0, 0) for an arbitrary direction
(u, v).

(b) Determine whether f is differentiable at (0, 0) and prove your answer.

3. Let E be a nonempty subset of a metric space and let f : E → R be uniformly
continuous on E. Prove that f has a unique continuous extension to the closure
of E. That is, there exists a unique continuous function g : E → R such that
g(x) = f(x) for x ∈ E.

4. Let Br denote the ball Br = {x ∈ R2 : |x| < r} and let f : B1 → R be a
continuously differentiable function which is zero in the complement of a compact
subset of B1. Show that

lim
ε→0+

∫
B1\Bε

x1fx1
+ x2fx2

|x|2
dx1 dx2

exists and equals Cf(0) for a constant C which you are to determine.

5. Let E be a nonempty subset of a metric space and assume that for every ε > 0
E is contained in the union of finitely many balls of radius ε. Prove that every
sequence in E has a subsequence which is Cauchy.

1



2

6. For which exponents r > 0 is the limit

lim
n→∞

n2∑
k=1

nr−1

nr + kr

finite? Prove your answer.

7. Let V be a neighborhood of the origin in R2, and f : V → R be continuously
differentiable. Assume that f(0, 0) = 0 and f(x, y) ≥ −3x + 4y for (x, y) ∈ V .
Prove that there is a neighborhood U of the origin in R2 and a positive number ε
such that, if (x1, y1), (x2, y2) ∈ U and f(x1, y1) = f(x2, y2) = 0, then

|y2 − y1| ≥ ε|x2 − x1|.

8.
(a) Find necessary and sufficient conditions on functions h, k : R2 → R2 such

that, given any smooth F : R3 → R3 of the form F = (F1(y, z), F2(x, z), 0) and
whose divergence is zero, there is a smooth G : R3 → R3 of the form G = (G1, G2, 0)
such that ∇× G = F in R3 and G = (h, k, 0) on z = 0. (∇× G is the curl of the
vector field G.)

(b) Let F be as in (a) and evaluate the surface integral∫∫
S

F · N dA

where S is the hemisphere

{(x, y, z) : x2 + y2 + z2 = 1, 0 ≤ z ≤ 1},

N is the unit normal on S in the positive z-direction, and dA is the surface area
element.

9. Let f = (f1, . . . , fn) map an open set U in Rn into Rn be C1 and suppose that,
for some x ∈ U the matrix f ′(x) is negative definite (an n×n matrix A is negative
definite if ξ · Aξ < 0 for all nonzero ξ ∈ Rn). Show that there is a positive number
ε and a neighborhood V of x such that, if y1, . . . , yn are any n points in V and if A
is the n × n matrix whose i-th row is ∇f i(yi), then ξ · Aξ ≤ −ε|ξ|2 for all ξ ∈ Rn.

10. Let f be a C1 mapping of an open set U ⊂ Rn into Rn and suppose that
f(x̄) = 0 for some x ∈ U and that f ′(x̄) is negative definite. Show that there is a
neighborhood W of x̄ and a positive number δ such that, if a sequence {xk}∞k=0 is
generated from the recursion

xk+1 = xk + δf(xk)

with x0 ∈ W , then each xk is in W and xk → x as k → ∞. You may use here the
result stated in problem 9 without having solved problem 9.



ANALYSIS TIER 1 EXAM

January 2013

Be sure to fully justify all answers. Each of the 10 problems is worth 10 points. Please write
on only one side of each sheet of paper. Begin each problem on a new sheet, and be sure to

write the problem number on each sheet of paper. Please be sure that you assemble your test
with the problems presented in the correct order. You have 4 hours.

1. Let X be a bounded closed subset of R4. Let f : X → X be a homeomorphism. Write

fn for the nth iterate of f if n > 0, for the −nth iterate of f−1 if n < 0, and for the identity

map if n = 0. Thus, fn+1(x) = f
(

fn(x)
)

for all n ∈ Z. Write A(x) :=
{

fn(x) : n ∈ Z
}

for

x ∈ X . Suppose that A(x) is dense in X for all x ∈ X . Show that for each given x ∈ X

and all ϵ > 0, there exists n > 0 such that for all y ∈ X , there exists k ∈ [0, n] such that

∥fk(y)− x∥ < ϵ.

2. Let f : R → R be a function that is differentiable at 0 with f ′(0) ̸= 0. Evaluate

lim
h→0

f(h2 + h3)− f(h)

f(h)− f(h2 − h3)
.

3. Determine all real x for which the following series converges:

∞
∑

k=1

kk

k!
xk .

You may use the fact that

lim
k→∞

k!√
2πk(k/e)k

= 1 .

4. (a) Prove that for all a ∈ R,
∣

∣

∣

∣

∣

∞
∑

n=1

a

n2 + a2

∣

∣

∣

∣

∣

<
π

2
.

(b) Determine the least upper bound of the set of numbers

{
∣

∣

∣

∣

∣

∞
∑

n=1

a

n2 + a2

∣

∣

∣

∣

∣

: a ∈ R

}

.

1



5. Let f(x) be continuous in the interval I := (0, 1). Define

D+f(x0) := lim inf
h→0+

f(x0 + h)− f(x0)

h
.

Put

S := {x ∈ I : D+f(x) < 0} .

Suppose that the set f(I \ S) does not contain any non-empty open interval. (Note: this is

f(I \ S), not I \ S.) Prove that f(x) is non-increasing on I.

6. Let f : (0, 1) → R be a function satisfying

∀x, y, θ ∈ (0, 1) f
(

θx+ (1− θ)y
)

≤ θf(x) + (1− θ)f(y) .

Prove that f is continuous on (0, 1).

7. Let f0 : R → R be the periodic function with period 1 defined on one period by

f0(x) :=

⎧

⎪

⎨

⎪

⎩

x for 0 ≤ x <
1

2
,

1− x for
1

2
≤ x ≤ 1.

Let

fk(x) :=
1

10k
f0(10

kx) for k ∈ N

and let sk := f0 + f1 + · · ·+ fk.

(a) Prove that the sequence {sk} converges uniformly on R to a continuous function s : R →
R.

(b) Evaluate
∫ 1

0
s(x) dx.

8. Let f : [a, b] → R be a differentiable function.

(a) Prove that if f ′ is Riemann integrable over [a, b], then

∫ b

a

f ′(x) dx = f(b)− f(a) .

(b) Give an example of f such that f ′ is not Riemann integrable.

2



9. Let A := {(x,y) ∈ R3 × R3 : x · x = 1, y · x = 0}, where “·” is the standard dot

product in R3 (note that A can be naturally identified with the set of all tangent vectors

to the unit sphere in R3). Show that, as a subset of R6, the set A is locally the graph of a

C∞ map R4 → R2 everywhere, i.e., at every point p = (a1, a2, a3, a4, a5, a6) ∈ A, there exist

1 ≤ j1 < j2 ≤ 6 and C∞ functions f, g defined in a neighborhood of (ai1 , ai2 , ai3, ai4) ∈ R4,

where {i1, i2, i3, i4} = {1, . . . , 6} \ {j1, j2}, with

f(ai1 , ai2 , ai3, ai4) = aj1 ,

g(ai1, ai2 , ai3, ai4) = aj2 ,

and such that in a neighborhood of p, the set A is the graph

(

xj1 , xj2

)

=
(

f(xi1 , xi2 , xi3 , xi4), g(xi1, xi2 , xi3 , xi4)
)

.

10. Let F be the vector field in R3 \ {0} defined by

F(x, y, z) :=
xzj− xyk

(y2 + z2)
√

x2 + y2 + z2
.

(a) Show that the curl of F is given by

∇× F (x, y, z) =
xi + yj+ zk

(x2 + y2 + z2)3/2
.

(b) Compute the line integral
∫

C F · ds, where C is the unit circle centered at the point

(1, 1, 1) that lies on the plane x + y + z = 3 and has the orientation from the point
(

1− 1√
6
, 1− 1√

6
, 1 + 2√

6

)

to
(

1− 1√
6
, 1 + 2√

6
, 1− 1√

6

)

to
(

1 + 2√
6
, 1− 1√

6
, 1− 1√

6

)

and back

to
(

1− 1√
6
, 1− 1√

6
, 1 + 2√

6

)

.

3



• R
• Rn

• |x| x 2 Rn

n = 1

n,N A ⇢ Rn

B(a, r) = {x 2 Rn

: |x� a|  r}, a 2 Rn

, r � 0.

a1, a2, . . . , aN 2 Rn

r1, . . . , rN 2 [0,+1)

A ⇢
N[

k=1

B(a

k

, r

k

)

P
N

k=1 r
2
k

{
P

N

k=1 r
2
k

: A (B(a

k

, r

k

))

N

k=1}

(cos(⇡

p
n

2
+ n))

1
n=1

x 2 R
1X

n=1

(�1)

n

x+ n

(�1, 1)

f

n

: [0, 1] ! R f

n

(x) = (1 � x

n

)

2n

x 2 [0, 1] n 2 N lim

n!1 f

n

(x)

x 2 [0, 1] [0, 1]

f : [0, 1] ! R " > 0

g, h : [0, 1] ! R g(x) 
f(x)  h(x) x 2 [0, 1]ˆ 1

0
(h(x)� g(x)) dx < ".

f : R ! R

f(x+ t) � f(x) t

2

x t f

f : R2 ! R2

f x = (x1, x2) 2 R2 |f(x)|  1

|x| = 1 |f(x)|  1 |x|  1



ˆ 1

�1

ˆ 1

�1

e

�|x�y|2

1 + |x+ y|2 dx dy.

r 6= 1 C

r

= {(x, y) 2 R2
: (x� 1)

2
+ y

2
= r}

ˆ
Cr

x dy � y dx

x

2
+ y

2
,

C

r

(1, 0)



Tier 1 Analysis Exam

January 6, 2014

Each problem below is worth 10 points. Answer each one on a new

sheet of paper, writing the problem number on every sheet. Use only

one side of each sheet, and fully justify all answers. Put your answers

in the correct order when you turn them in. You have 4 hours.

0.1. Suppose a metric space (X, d) has this property: Given any " >

0 , there is a non-empty finite subset X

"

⇢ X such that for every

x 2 X, we have

inf{d(x, p) : p 2 X

"

}  "

a) Show that in this case, every sequence in X has a Cauchy

subsequence.

b) Give an example showing that (a) fails if we don’t require the

X

"

’s to be finite.

0.2. For p, q 2 R

3
, let |p| and p⇥q respectively denote the euclidean

norm of p, and the cross-product of p and q . Define d : R

3 ⇥R

3 !
[0,1) by

d(p, q) =

(
|p|+ |q|, p⇥ q 6= 0

|p � q|, p⇥ q = 0

a) Show that d is a metric on R

3
.

b) Show that the closed unit d-ball centered at (0, 0, 0) is not

d-compact.

c) Show that the closed unit d-ball centered at (1, 1, 1) is d-

compact.

0.3. Assume f,! : R ! R are functions, with !(0) = 0. Assume too

that for some ↵ > 1, we have

(1) f(b)  f(a) + !(|b� a|)↵ for all a, b 2 R

a) Show that when ! is di↵erentiable at x = 0, our assumptions

make f infinitely di↵erentiable at every point.

b) Give an example showing that when ↵ > 1 but ! is merely

continuous, our assumptions do not force di↵erentiability of f

at all points.
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0.4. Show that every sequence in R has a weakly monotonic (i.e.

non-increasing, or non-decreasing) subsequence.

0.5. Show that the series converges, but not absolutely:

1X

n=1

✓
exp

✓
(�1)

n

n

◆
� 1

◆

0.6. Consider this integral:

Z 1

0

sin(x

p

) dx

a) Does it converge when p = 1 ?

b) Does it converge when p < 0 ?

c) Does it converge when p > 1 ?

0.7. Suppose f : [0,1) ! [0,1) is a continuous bijection and consider

the series

1X

n=1

nf(x

2
)

1 + n

3
f(x

2
)

2

a) Show that the series converges pointwise for all x 2 R .

b) Show that it converges uniformly on [",1) when " > 0 .

c) Show that it does not converge uniformly on R.

0.8. Let S denote the upper hemisphere of radius r > 0 centered at

0 2 R

3
, i.e.,

S = {(x, y, z) | x2
+ y

2
+ z

2
= r

2
and z � 0}

and suppose F : R

3 ! R

3
is the vector field given by

F (x, y, z) =

0

@
x y

2
tanh(x

2
+ z)

x+ y

4
sin(z) e

�x

2

x

2
(x

3
+ 3) y e

�x

2�y

2�z

2

1

A
.



TIER 1 ANALYSIS EXAM, JANUARY 6, 2014 3

Compute Z

S

curl(F ) · n dS

where n is the upward pointing unit surface normal, and dS is the area

element on S.

0.9. Consider this system of equations in the variables u, v, s, t :

(uv)

4
+ (u+ s)

3
+ t = 0

sin(uv) + e

v

+ t

2 � 1 = 0.

Prove that near the origin 0 2 R

4
, its solutions form the graph of a

continuously di↵erentiable function G : R

2 ! R

2
. Clearly indicate

the dependent and independent variables.

0.10. Let

f(x, y) =

(
yx

6+y

3+x

3
y

x

6+y

2 (x, y) 6= (0, 0)

0 (x, y) = (0, 0)

a) Show that all directional derivatives of f exist at (0, 0), and

depend linearly on the vector we di↵erentiate along.

b) Show that nevertheless, f is not di↵erentiable at (0, 0).



Tier I Analysis Exam, August 2014

Try to work all questions. Providing justification for your answers is crucial.

1. Suppose f : R → R is differentiable with f(0) = f(1) = 0 and

{x : f ′(x) = 0} ⊂ {x : f(x) = 0} .

Show that f(x) = 0 for all x ∈ [0, 1].

2. Let (an) be a bounded sequence for n = 1, 2, . . . such that

an ≥ (1/2)(an−1 + an+1) for n ≥ 2 .

Show that (an) converges.

3. Suppose K ⊂ Rn is a compact set and f : K → R is continuous. Let ε > 0 be given.

Prove that there exists a positive number M such that for all x and y in K one has the

inequality:

|f(x)− f(y)| ≤ M ∥x− y∥+ ε.

Here ∥·∥ denotes the Euclidean norm in Rn. Then give a counter-example to show that

the inequality is not in general true if one takes ε = 0.

4. Let f : Rn → Rn be a smooth function and let g : Rn → R be defined by

g(x1, . . . , xn) = x5
1 + . . .+ x5

n.

Suppose g ◦ f ≡ 0. Show that detDf ≡ 0.

5. The point (1,−1, 2) lies on both the surface described by the equation

x2(y2 + z2) = 5

and on the surface described by

(x− z)2 + y2 = 2.

Show that in a neighborhood of this point, the intersection of these two surfaces can be

described as a smooth curve in the form z = f(x), y = g(x). What is the direction of

the tangent to this curve at (1,−1, 2)?



6. For what smooth functions f : R3 → R is there a smooth vector field W : R3 → R3 such

that curlW = V , where

V (x, y, z) = (y, x, f(x, y, z))?

For f in this class, find such a W. Is it unique?

7. For each positive integer n let fn : [0, 1] → R be a continuous function, differentiable on

(0, 1], such that

|f ′
n(x)| ≤

1 + |ln x|√
x

for 0 < x ≤ 1.

and such that

−10 ≤
∫ 1

0

fn(x) dx ≤ 10.

Prove that {fn} has a uniformly convergent subsequence on [0, 1].

8. Define for n ≥ 2 and p > 0

Hn(p) =
n

∑

k=1

(log k)p and an(p) =
1

Hn(p)
.

For which p does
∑

n an(p) converge?

9. Given any continuous, piecewise smooth curve γ : [0, 1] → R2, consider the following

notion of its ‘length’ L̃ defined through the line integral:

L̃(γ) :=

∫

γ

|x| ds =
∫ 1

0

|x(t)|
√

x′(t)2 + y′(t)2 dt

where a point in R2 is written as (x, y) and γ(t) = (x(t), y(t)).

(a) Suppose we define a notion of distance d̃ between two points p1 and p2 in R2 via

d̃(p1, p2) := inf{L̃(γ) : γ(0) = p1, γ(1) = p2}.

Working through the definition of metric, determine which properties of a metric hold

for d̃, and which, if any, do not.

(b) Determine the value of d̃
(

(1, 1), (−1,−2)
)

and determine a curve achieving this

infimum.



Tier 1 Analysis Exam

January 5, 2015

You have 4 hours to work these 10 problems. Each is worth 10 points.

- Start each answer on on a clean sheet of paper

- Use only one side of each sheet

- Circle the prob. number in the upper-right corner of each sheet

- Fully justify all answers.

- Put your answers in the correct order before submitting them.

0.1. An open set U ⇢ R

n

contains the closed origin-centered unit

ball B = B(0, 1) . If a C

1
mapping f : U ! R

n

with rank n obeys

kf(x)� xk < 1/2 for all x 2 U , show that

a) kfk2 must attain a minimum in the interior of B .

b) f(p) = 0 for some p 2 B.

0.2. Suppose f, g : R ! R, are functions that obey

f(x+ h) = f(x) + g(x)h+ a(x, h)

for all x, h 2 R, with |a(x, h)|  Ch

3
for some constant C.

Show that f is a�ne (i.e., f(x) = mx+ b for some m, b 2 R ).

0.3. Suppose f is di↵erentiable on an open interval containing [�1, 1].

Do not assume continuity of f

0
.

a) Supposing f

0
(�1)f

0
(1) < 0 show that f

0
(x) = 0 for some x 2

(�1, 1) .

b) Supposing that f

0
(�1) < L < f

0
(1) for some L 2 R, show

that f

0
(x) = L for some x 2 (�1, 1) .

0.4. Suppose (X, d) is a complete metric space. Show that if every

continuous function on a subset U ⇢ X attains a minimum, then U

is closed.

0.5. Define the distance from a point p in a metric space (X, d) to a

subset Y ⇢ X by

d(p, Y ) := inf{d(x, y) : y 2 Y }
For any " > 0 , define

Y

"

= {x 2 X : d(x, Y )  "}
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Finally, given any two bounded sets A,B ⇢ X , define

d

S

(A,B) = inf{" > 0: A ⇢ B

"

and B ⇢ A

"

}

(a) Show that d

S

yields a metric on the set of closed bounded subsets

of X.

(b) Show that d

S

fails to do so on the set of bounded subsets of X.

0.6. Determine whether the series converges or not.

1X

j=1

⇣
e

(�1)j sin(1/j) � 1

⌘

0.7. Let B

r

denote the ball |x|  r in R

3
, and write dS

r

for the

area element on its boundary @B

r

.

The electric field associated with a uniform charge distribution on @B

R

may be expressed as

E(x) = C

Z

@BR

r
x

|x� y|�1
dS

y

,

a) Show that for any r < R, the electric flux

R
@Br

E(x) · ⌫ dS

x

through @B

r

equals zero.

b) Show that E(x) ⌘ 0 for |x| < R (“a conducting spherical shell

shields its interior from outside electrical e↵ects”).

0.8. Let Q be a bounded closed rectangle in R

n

, and suppose we have

functions f, g : Q ! R that, for some K > 0, satisfy

|f(x)� f(y)|  K |g(x)� g(y)|
and all x, y 2 Q . Prove that if g is Riemann integrable, then so is f .

Deduce further that integrability of f implies that of |f |.

0.9. Suppose f : U ! R is a di↵erentiable function defined on an

open set U � [0, 1]

2
. Assuming f(0, 0) = 3 and f(1, 1) = 1, prove

that for |rf | �
p
2 somewhere in U .

0.10. Consider this quadratic system in R

4
:

a

2
+ b

2 � c

2 � d

2
= 0

ac+ bd = 0

Show the system can be solved for (a, c) in terms of (b, d) (or vice-

versa) near any solution (a0, b0, c0, d0) 6= (0, 0, 0, 0). (You need not find

explicit solutions here.)



Analysis Tier I Exam

August 2015

• Be sure to fully justify all answers.

• Scoring: Each problem is worth 10 points.

• Please write on only one side of each sheet of paper. Begin

each problem on a new sheet, and be sure to write a problem

number on each sheet of paper.

• Please be sure that you assemble your test with the problems presented

in correct order.

1. Let f(x) be a continuous function on (0, 1] and

lim inf

x!0+
f(x) = ↵, lim sup

x!0+
f(x) = �.

Prove that for any ⇠ 2 [↵,�], there exist {x
n

2 (0, 1] | n = 1, 2, · · · }
such that

lim

n!1
f(x

n

) = ⇠.

2. Let f(x) be a function which is defined and is continuously di↵er-

entiable on an open interval containing the closed interval [a,b], and

let

f

�1
(0) = {x 2 [a, b] | f(x) = 0}.

Assume that f

�1
(0) 6= ;, and for any x 2 f

�1
(0), f

0
(x) 6= 0. Prove

the following assertions:

(a) f

�1
(0) is a finite set;

(b) Let p be the number of points in f

�1
(0) such that f

0
(x) > 0, and

q be the number of points in f

�1
(0) such that f

0
(x) < 0. Then

|p� q|  1.

3. Let

P1
n=1 an be a convergent positive term series (a

n

� 0 for all n).

Show that

P1
n=1

p
an
n

converges. Is the converse true?

1



4. Let f : R ! R be di↵erentiable with f

0
uniformly continuous. Suppose

lim

x!1
f(x) = L for some L. Does lim

x!1
f

0
(x) exist?

5. Let E ⇢ R be a set with the property that any countable family of

closed sets that cover E contains a finite subcollection which covers

E. Show that E must consist of finitely many points.

6. Suppose that a function f(x) is defined as the sum of a series:

f(x) = 1� 1

(2!)

2
(2015x)

2
+

1

(4!)

2
(2015x)

4 � 1

(6!)

2
(2015x)

6
+ . . .

=

1X

k=0

(�1)

k

1

((2k)!)

2
(2015x)

2k
.

Evaluate Z 1

0
e

�x

f(x) dx.

7. Find the volume of the solid S in R3
, which is the intersection of two

cylinders C1 = {(x, y, z) 2 R3
; y

2
+ z

2  1} and C2 = {(x, y, z) 2
R3

; x

2
+ z

2  1}.

8. Let f : Rn ! Rm

be continuous. Suppose that f has the property

that for any compact set K ⇢ Rm

, the set f

�1
(K) ⇢ Rn

is bounded.

Prove that f(Rn

) is a closed subset of Rm

, or give a counterexample

to this claim.

9. Let F : R2 ! R have continuous second-order partial derivatives.

Find all points where the condition in the implicit function theorem

is satisfied so that F (x� y, y� z) = 0 defines an implicit function z =

z(x, y), and derive explicit formulas, in terms of partial derivatives of

F , for

@z

@x

,

@z

@y

,

@

2
z

@x@y

.

10. Suppose that a monotone sequence of continuous functions {f
n

}1
n=1

converges pointwise to a continuous function F on some closed interval

[a, b]. Prove that the convergence is uniform.

Note: In this problem by a monotone sequence of functions we mean a

sequence f

n

such that either f

n

(x)  f

n+1(x) for all n and all x 2 [a, b],

or f

n

(x) � f

n+1(x) for all n and all x 2 [a, b].

2
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Solve all nine problems. They all count equally. Show all computations.

1. Let a > 0 and let xn be a sequence of real numbers. Assume the sequence

yn =
x1 + x2 + . . .+ xn

na

is bounded. Show that for each b > a, the series

∞
∑

n=1

xn

nb

is convergent.

2. (a) Show that for each integer n ≥ 1 there exists exactly one x > 0 such that

1√
nx+ 1

+
1√

nx+ 2
+ . . .+

1√
nx+ n

=
√
n.

(b) Call xn the solution from (a). Find

lim
n→∞

xn.

3. Let (X, d) be a compact metric space and let ρ be another metric on X such that

ρ(x, x′) ≤ d(x, x′), for all x, x′ ∈ X.

Show that for all ϵ > 0 there exists δ > 0 such that

ρ(x, x′) < δ =⇒ d(x, x′) < ϵ.

4. Prove that for each x ∈ R there is a choice of signs sn ∈ {−1, 1} such that the series

∞
∑

n=1

sn√
n

converges to x.
5. Assume the function f : R2 → R satisfies the property

f(x+ t, y + s) ≥ f(x, y)− s2 − t2,

for each (x, y) ∈ R2 and each (s, t) ∈ R2. Prove that f must be constant.

6. Assume f : [0, 1] → R is continuous and f(0) = 2016. Find

lim
n→∞

∫ 1

0

f(xn)dx.



7. Let f : R3 → R and g : R2 → R be two differentiable functions with f(x, y, z) = g(xy, yz)
and suppose that g(u, v) satisfies

g(2, 6) = 2,
∂g

∂u
(2, 6) = −1, and

∂g

∂v
(2, 6) = 3.

Show that the set S = {(x, y, z) ∈ R3 : f(x, y, z) = 2} admits a tangent plane at the point
(1, 2, 3), and find an equation for it.

8. Let C be the collection of all positively oriented (i.e. counter-clockwise) simple closed
curves C in the plane. Find

sup{
∫

C

(y3 − y)dx− 2x3dy : C ∈ C}.

Is the supremum attained?

9. Let
H = {(x, y, z) | z > 0 and x2 + y2 + z2 = R2}

be the upper hemisphere of the sphere of radius R centered at the origin in R3. Let F :
R3 → R3 be the vector field

F (x, y, z) =
(

x2 sin
(

y2 − z3
)

, xy4z + y, e−x2−y2 + yz
)

Find

∫

H

F · n̂ dS where n̂ is the outward pointing unit surface normal and dS is the area

element.
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Directions: Be sure to use separate pieces of paper for di↵erent solutions. This exam

consists of nine questions and each counts equally. Credit may be given for partial

solutions.

(1) Let f : [0, 1] ! R be an nondecreasing function, and let D be the set of x 2 [0, 1]

such that f is not continuous at x. Is the set D necessarily compact? Fully

justify your answer.

(2) Show that there exist a real number " > 0 and a di↵erentiable function f :

(�", ") ! R such that

e

x

2+f(x)
= 1� sin(x+ f(x)).

(3) Prove that the function f defined by

f(x) :=

1X

n=0

cos (n

2
x)

2

nx

is continuous on the interval (0,1).

(4) Using only the definitions of continuity and (sequential) compactness, prove

that if K ⇢ R is (sequentially) compact and f : K ! R is continuous, then f

is uniformly continuous, that is, for all ✏ > 0, there exists � > 0 such that if

|x� y| < � then |f(x)� f(y)| < ✏.

(5) Show that if {x
n

}1
n=1 is a sequence of real numbers such that

lim

n!1(x

n+1�x

n

) = 0, then the set of limit of points of {x
n

} is connected, that

is, either empty, a single point, or an interval.

(6) Let a and b be positive numbers, and let � be the closed curve in R3
that

is the intersection of the surface {(x, y, z) : z = b · x · y} and the cylinder

{(x, y, z) : x

2
+ y

2
= a

2}. Let r be a parametrization of � so that the curve

is oriented counter-clockwise when looking down upon it from high up on the

z-axis. Compute Z

�

F · dr.

where F is the vector valued function defined by F (x, y, z) = (y, z, x).

1
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(7) Let ⌦ = {(x, y) 2 R2
: y > 0}, and define f : ⌦ ! R by

f(x, y) =

2 +

p
(1 + x)

2
+ y

2
+

p
(1� x)

2
+ y

2

p
y

.

Show that f has achieves its minimum value on ⌦ at a unique point (x0, y0) 2 ⌦

and find (x0, y0).

(8) Suppose that (a

n

)

1
n=1 is a bounded sequence of positive numbers. Show that

lim

n!1

a1 + a2 + · · ·+ a

n

n

= 0

if and only if

lim

n!1

a

2
1 + a

2
2 + · · ·+ a

2
n

n

= 0.

(9) Define d : Rn ⇥ Rn ! R by

d(x, y) =

kx� yk
kxk2 + kyk2 + 1

where kxk2 = x

2
1 + · · ·+ x

2
n

. Let A ⇢ Rn

be such that there exists ✏ > 0 so that

if a, b 2 A with a 6= b, then d(a, b) � ✏. Show that A is finite.



Tier 1 Analysis Exam

January 2017

Do all nine problems. They all count equally. Show your work and justify your answers.

1. Define a subset X of Rn

to have property C if every sequence with exactly one ac-

cumulation point in X converges in X. (Recall that x is an accumulation point of a

sequence (x

n

) if every neighborhood of x contains infinitely many x

n

.)

(a) Give an example of a subset X ⇢ Rn

, for some n � 1, that does not have property

C, together with an example of a non-converging sequence in X with exactly one

accumulation point.

(b) Show that any subset X of Rn

satisfying property C is compact.

2. Prove that the sequence

a1 = 1, a2 =
p
7, a3 =

q
7

p
7, a4 =

r

7

q
7

p
7, a5 =

s

7

r

7

q
7

p
7, . . .

converges, then find its limit.

3. Given any metric space (X, d) show that

d

1+d

is also a metric on X, and show that

(X,

d

1+d

) shares the same family of metric balls as (X, d).

4. Suppose that a function f(x) is defined as the sum of series

f(x) =

X

n�3

⇣
1

n� 1

� 1

n+ 1

⌘
sin(nx).

(a) Explain why f(x) is continuous.

(b) Evaluate Z
⇡

0

f(x) dx.

5. Let h : R ! R be a continuously differentiable function with h(0) = 0, and consider

the following system of equations:

e

x

+ h(y) = u

2
,

e

y � h(x) = v

2
.

Show that there exists a neighborhood V ⇢ R2
of (1, 1) such that for each (u, v) 2 V

there is a solution (x, y) 2 R2
to this system.

6. Let n be a positive integer. Let f : Rn ! R be a continuous function. Assume that

f(~x) ! 0 whenever k~xk ! 1. Show that f is uniformly continuous on Rn

.



7. Let f

n

(x) and f(x) be continuous functions on [0, 1] such that lim

n!1 f

n

(x) = f(x)

for all x 2 [0, 1]. Answer each of the following questions. If your answer is “yes”, then

provide an explanation. If your answer is “no”, then give a counterexample.

(a) Can we conclude that

lim

n!1

Z 1

0

f

n

(x)dx =

Z 1

0

f(x)dx?

(b) If in addition we assume |f
n

(x)|  2017 for all n and for all x 2 [0, 1], can we

conclude that

lim

n!1

Z 1

0

f

n

(x)dx =

Z 1

0

f(x)dx?

8. Evaluate the flux integral

ZZ

@V

�!
F ·�!n dS, where the field

�!
F is

�!
F (x, y, z) = (xe

xy � 2xz + 2xy cos

2
z)

�!
ı + (y

2
sin

2
z � ye

xy

+ y)

�!
| + (x

2
+ y

2
+ z

2
)

�!
k ,

and V is the (bounded) solid in R3
bounded by the xy-plane and the surface z =

9 � x

2 � y

2
, @V is the boundary surface of V , and

�!
n is the outward pointing unit

normal vector on @V .

9. A continuously differentiable function f from [0, 1] to [0, 1] has the properties

(a) f(0) = f(1) = 0;

(b) f

0
(x) is a non-increasing function of x.

Prove that the arclength of the graph of f does not exceed 3.



Tier I Analysis Exam

August, 2017

• Be sure to fully justify all answers.

• Scoring: Each problem is worth 10 points.

• Please write on only one side of each sheet of paper. Begin

each problem on a new sheet, and be sure to write a problem

number on each sheet of paper.

• Please be sure that you assemble your test with the problems presented

in correct order.

(1) Let X be the set of all functions f : N ! {0, 1}, taking only two values

0 and 1. Define the metric d on X by

d(f, g) =

8
<

:

0 if f = g,

1

2

m

if m = min{n | f(n) 6= g(n)}.

(a) Prove that (X, d) is compact.

(b) Prove that no point in (X, d) is isolated.

(2) Let C[0, 1] be the space of all real continuous functions defined on the

interval [0, 1]. Define the distance on C[0, 1] by

d(f, g) = max

x2[0,1]
|f(x)� g(x)|.

Prove that the following set S ⇢ C[0, 1] is not compact:

S = {f 2 C[0, 1] | d(f, 0) = 1},
where 0 2 C[0, 1] stands for the constant function with value 0.

(3) Let F (x, y) =

P1
n=1 sin(ny) · e�n(x+y)

. Prove that there are a � > 0

and a unique di↵erentiable function y = '(x) defined on (1� �, 1 + �),

such that

'(1) = 0, F (x,'(x)) = 0 8x 2 (1� �, 1 + �).

(4) Prove or find a counterexample: if f : Rn ! R is continuously

di↵erentiable with f(0) = 0, then there exist continuous functions

g1, ..., gn : Rn ! R with

f(x) = x1g1(x1, ..., xn

) + · · ·+ x

n

g

n

(x1, ..., xn

).



2

(5) Let {f
n

} be a sequence of real-valued, concave functions defined on an

open interval interval (�a, a) (�f

n

is convex). Let g : (�a, a) ! R.
Suppose f

n

and g are di↵erentiable at 0,

lim inf f

n

(t) � g(t) for all t, and lim f

n

(0) = g(0).

Show that lim f

0
n

(0) = g

0
(0).

(6) Let f(x, y) =

x

2
y

x

4+y

2 for (x, y) 6= (0, 0).

(a) Can f be defined at (0, 0) so that f

x

(0, 0) and f

y

(0, 0) exist? Jus-

tify your answer.

(b) Can f be defined at (0, 0) so that f is di↵erentiable at (0, 0)?

Justify your answer.

(7) Let f : [�1, 1] ! R with f, f

0
, f

00
, f

000
being continuous. Show that

1X

n=2

⇢
n


f

✓
1

n

◆
� f

✓
� 1

n

◆�
� 2f

0
(0)

�

converges absolutely.

(8) Let {f
n

} be a uniformly bounded sequence of continuous real-valued

functions on a closed interval [a, b], and let g

n

(x) =

R
x

a

f

n

(t) dt for

each x 2 [a, b]. Show that the sequence of functions {g
n

} contains a

uniformly convergent subsequence on [a, b].

(9) Compute

R
D

xdxdy, where D ⇢ R2
is the region bounded by the

curves x = �y

2
, x = 2y � y

2
, and x = 2� 2y � y

2
. Show your work.

(10) Let

x0 > 0, x

n+1 =
1

2

✓
x

n

+

4

x

n

◆
, n = 0, 1, 2, 3, . . . .

Show that x = lim

n!1 x

n

exists, and find x.
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Problem 1. Let (X, d

X

) and (Y, d

Y

) be metric spaces. Let f : X ! Y be

surjective such that

1

2

d

X

(x, y)  d

Y

(f(x), f(y))  2d

X

(x, y)

for all x, y 2 X. Show that if (X, d

X

) is complete, then also (Y, d

Y

) is

complete.

Problem 2. Show that

lim

n!1

 
2

p
n�

nX

k=1

1p
k

!

exists.

Problem 3. Assume that bitter is a property of subsets of [0, 1] such that

the union of two bitter sets is bitter. Subsets of [0, 1] that are not bitter are

called sweet. Thus every subset of [0, 1] is either bitter or sweet. A sweet

spot of a set A ⇢ [0, 1] is a point x0 2 [0, 1] such that for every open set

U ⇢ R that contains x0, the set A \ U is sweet. Show that if A ⇢ [0, 1] is

sweet, then A has a sweet spot.

Problem 4. Let f and g be periodic functions defined on R, not necessarily
with the same period. Suppose that

lim

x!1
f(x)� g(x) = 0 .

Show that f(x) = g(x) for all x.

Problem 5. Let 0 < x

n

< 1 be an infinite sequence of real numbers such

that for all 0 < r < 1 X

xn<r

log

r

x

n

 1 .

Show that

1X

n=1

(1� x

n

) < 1 .

Problem 6. Suppose that the series

P1
n=1 an converges conditionally. Show

that the series

1X

n=3

n(log n)(log log n)

2
a

n

diverges.

Problem 7. Find the absolute minimum of the function f(x, y, z) = xy +

yz + zx on the set g(x, y, z) = x

2
+ y

2
+ z

2
= 12.

Problem 8. Let f : R2 ! R2
be a C

1
map such that f

�1
(y) is a finite set

for all y 2 R2
. Show that the determinant det df(x) of the Jacobi matrix of

f cannot vanish on an open subset of R2
.

1



Problem 9. A regular surface is given by a continuously di↵erentiable map

f : R2 ! R3
so that the di↵erential df

x

: R2 ! R3
has rank 2 for all x 2 R2

.

The tangent plane T

x

is the 2-dimensional subspace df

x

(R2
) ⇢ R3

. Assume

that a vector field X in R3
is orthogonal to T

x

for all x, i.e. X(f(x)) ·Y = 0

for all x 2 R2
and all Y 2 T

x

. Show that X · (r⇥X) = 0 at all points f(x).

Problem 10. Let f(x, y) be a function defined on R2
such that

- For any fixed x, the function y 7! f(x, y) is a polynomial in y;

- For any fixed y, the function x 7! f(x, y) is a polynomial in x.

Show that f is a polynomial, i.e.

f(x, y) =

NX

i,j=0

a

ij

x

i

y

j

with suitable a

i,j

2 R, i, j = 0, . . . , N .



TIER I ANALYSIS EXAMINATION

August 2018

Instructions: There are ten problems, each of equal value. Show your work, justifying all

steps by direct calculation or by reference to an appropriate theorem.

Notation: For x = (x1, . . . , xn

),y = (y1, . . . , yn) 2 Rn

, |x| =
p
x

2
1 + · · ·+ x

2
n

, and d(x,y) =
|x� y|.

1. Suppose (a

n

)

1
n=1 is a sequence of positive real numbers and

P1
n=1 an = 1. Prove that there

exists a sequence of positive real numbers (b

n

)

1
n=1 such that lim

n!1 b

n

= 0 and

P1
n=1 anbn =

1.

2. Show that

P1
n=1 sin(x

n

)/n! converges uniformly for x 2 R to a C

1
function f : R ! R,

and compute an expression for the derivative. Justify this computation.

3. Let f : (0,1) ! R be di↵erentiable. Show that the intersection of all tangent planes to

the surface z = xf(x/y) (x, y 2 (0,1)) is nonempty.

4. For x 2 R, let bxc denote the largest integer that is less than or equal to x. Prove that

1X

n=1

(�1)

b
p
nc

n

converges. Suggestion: The inequality

1

`+ 1

<

ˆ
`+1

`

1

x

dx <

1

`

might be helpful. You do not need to justify this inequality.

5. Let B be the closed unit ball in R2
with respect to the usual metric, d (defined above).

Let ⇢ be the metric on B defined by

⇢(x, y) =

(
|x� y| if x and y are on the same line through the origin,

|x|+ |y| otherwise,

for x,y 2 B. (Note that ⇢(x, y) is the minimum distance travelled in the usual metric in

going from x to y along lines through the origin.) Suppose f : B ! R is a function that is

uniformly continuous on B with respect to the metric ⇢ on B and the usual metric on R.
Prove that f is bounded.

6. Let

f(x) :=

(
sin x+ 2x

2
sin

1
x

if x 6= 0,

0 if x = 0.

Prove or disprove: there exists ✏ > 0 such that f is invertible when restricted to (�✏, ✏).

1
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7. Define a sequence of functions f

n

: [0, 2⇡] ⇢ R ! R by

f

n

(x) = e

sin(nx)
,

and define F

n

(x) =

´
x

0 f

n

(y) dy. Show that there exists a subsequence (F

nk
)

1
k=1 of (F

n

)

1
n=1

that converges uniformly on x 2 [0, 2⇡] to a continuous limit F⇤.

8. Let a closed curve, �, be parameterized by a function f : [0, 1] ! R2
with a continuous

derivative and f(0) = f(1). Suppose that

(1)

ˆ
�

(y

3
sin

2
x dx� x

5
cos

2
y dy) = 0.

Show that there exists a pair {x, y} 6= {0, 1} with x 6= y and f(x) = f(y). Give an example

of a curve satisfying (1) such that the only pairs {x, y} with x 6= y and f(x) = f(y) are

subsets of {0, 1/2, 1}.
9. Fix a > 0. Let S be the half-ellipsoid defined by S :=

�
(x, y, z) 2 R3

: x

2
+ y

2
+ (z/a)

2
=

1 and z � 0

 
. Let v be the vector field given by v(x, y, z) = (x, y, z + 1), and let n be the

outward unit normal field to the ellipsoid

�
(x, y, z) 2 R3

: x

2
+ y

2
+ (z/a)

2
= 1

 
.

(a) From the fact that the volume of D :=

�
(x, y, z) 2 R3

: x

2
+ y

2
+ z

2  1 and z � 0

is 2⇡/3, which you may assume without proof, use the change-of-variables formula in R3
to

find the volume of E :=

�
(x, y, z) 2 R3

: x

2
+ y

2
+ (z/a)

2  1 and z � 0

 
.

(b) Evaluate ˆˆ
S

v · n dA,

where dA denotes the surface area element.

10. Let f : Rn ! R be C

2
, let I denote the n⇥ n identity matrix, let

D

2
f(x) =

✓
@

2
f(x)

@x

i

@x

j

◆

1i,jn

,

and assume that there exists a positive real number a such that D

2
f(x) � aI is positive

definite for all x 2 Rn

, or equivalently, assume that there exists a positive real number a

such that Du[Duf ](x) � a for all unit vectors u 2 Rn

and points x 2 Rn

, where Du denotes

the directional derivative in the direction u. (You do not have to prove the equivalence of

these two versions of the assumption.)

(a) Let rf denote the gradient of f. Show that there exists a point x 2 Rn

such that

rf(x) = 0.

(b) Show that the map rf : Rn ! Rn

is onto.

(c) Show that the map rf : Rn ! Rn

is globally invertible, and the inverse is C

1
.
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Solve all nine problems. They all count equally. Show all computations.

1. Let f : R→ [0, 1] be continuous. Let x1 ∈ (0, 1). Define xn via the recurrence

xn+1 =
3

4
x2
n +

1

4

∫ |xn|
0

f, n ≥ 1.

Prove that xn is convergent and find its limit.

2. Suppose (X, d) is a compact metric space with an open cover {Ua}. Show that for some
ε > 0, every ball of radius ε is fully contained in at least one of the Ua’s.

3. Find

lim
N→∞

∞∑
n=N

1

n1+ 1
logN

.

Here log is the natural logarithm (in base e)

4. (a) Give an example of an everywhere differentiable function f : R→ R whose derivative
f ′(x) is not continuous.

(b) Show that when f, g : R → R are functions, and for every ε > 0 , there exists a
δ = δ(ε) > 0 such that |h| < δ guarantees∣∣∣∣f(x+ h)− f(x)

h
− g(x)

∣∣∣∣ < ε

for all x ∈ R, then f ′ exists and is continuous at every x ∈ R.

5. (a) Give an example of a continuous function on (0, 1] that attains neither a max nor a
min on (0, 1].

(b) Show that a uniformly continuous function on (0, 1] must attain either a max or a
min on (0, 1].

6. Assume f : (0, 1)2 → R is continuous and has partial derivative ∂f
∂x

at each point (x, y)
satisfying

|∂f
∂x

(x, y)| ≥ 1.

Consider the set
Sδ = {(x, y) ∈ (0, 1)2 : |f(x, y)| ≤ δ}.

Prove that the area of Sδ is less than or equal to 4δ for each δ > 0.

7. Prove that there are real-valued continuously differentiable functions u(x, y) and v(x, y)
defined on a neighborhood of the point (1, 2) ∈ R2 that satisfy the following system of
equations,

xu2 + yv2 + xy = 4

xv2 + yu2 − xy = 1.



8. Consider the upper hemi-ellipsoid surface Σ =
{

(x, y, z) ∈ R3 : x2

a2
+ y2

b2
+ z2

c2
= 1 and z ≥ 0

}
for positive constants a, b, c ∈ R and define the vector field

⇀
F= (∂yf,−∂xf, 2) on Σ for some

smooth function f : R3 → R. Evaluate the surface integral

∫
Σ

⇀
F · ⇀n dS, where ⇀n is the

upper/outward pointing unit normal field of Σ.

9. Let f : R2 → R be continuous and suppose that for some R > 0, |f(x, y)| < e−
√
x2+y2

whenever
√
x2 + y2 ≥ R.

(a) Show that the integral

g(s, t) =

∫ ∫
R2

f(x, y)
(
(x− s)2 + (y − t)2

)
dxdy

converges for all (s, t) ∈ R2

(b) Show that g is continuous on R2.
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Try to solve all 9 problems. They each count the same amount. Justify your answers.

1. Consider the function f : R2 → R given by

f(x, y) =


xy2

x2+y4
if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

(a) Show that the function f has a directional derivative in the direction of any unit

vector v ∈ R2 at the origin.

(b) Show that the function f is not continuous at the origin.

2. (a) Prove that if the infinite series

(∗)
∞∑
n=1

|an+1 − an| converges for some sequence {an} ⊂ R,

then necessarily the sequence {an} converges as well.

(b) Give an example of a sequence {an} such that (∗) holds while the series

∞∑
n=1

an diverges.

3. Let f : [0, 1]→ R be Riemann integrable and continuous at 0. Show that

lim
n→∞

∫ 1

0

f(xn)dx = f(0) .

4. Let

F = cos(y2 + z2)i + sin(z2 + x2)j + ex
2+y2k

be a vector field on R3. Calculate
∫
S

F · dS, where the surface S is defined by

x2 + y2 = ez cos z, 0 ≤ z ≤ π/2, and oriented upward.



5. For positive integers n and m suppose f : Rn → Rm is continuous and suppose K ⊂ Rn

is compact. Give a proof that f(K) is compact, that is, give a proof of the fact that the

image of a compact set in Rn under a continuous map is compact.

6. Suppose that f : (0,∞) → (0,∞) is a differentiable and positive function. Show that

for any constant a > 1, it must hold that

lim inf
x→∞

f ′(x)(
f(x)

)a ≤ 0.

Hint: You might consider an argument that proceeds by contradiction.

7. Prove that the following series

∞∑
n=1

3n2 + x4 cos(nx)

n4 + x2

converges to a continuous function f : R→ R.

8. Consider the two functions

F (x, y, z) := xe2y + yez − zex

and

G(x, y, z) := ln(1 + x+ 2y + 3z) + sin(2x− y + z).

(a) Argue that in a neighborhood of (0, 0, 0), the set

{(x, y, z) : F (x, y, z) = 0} ∩ {(x, y, z) : G(x, y, z) = 0}

can be represented as a continuously differentiable curve parametrized by x.

(b) Find a vector that is tangent to this curve at the origin.

9. Let {fn} be a monotone sequence of continuous functions on [a, b], that is, f1(x) ≤

f2(x) ≤ f3(x) ≤ · · · for all x ∈ [a, b]. Suppose {fn} converges pointwise to a function f

which is also continuous on [a, b], as n→∞. Show that the convergence is uniform on

[a, b].
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Write the solution to each of the following problems on a separate, clearly iden-
tified page. Each problem is graded on a scale of zero to ten.

Problem 1. Let {an}n∈N be a sequence of nonnegative real numbers such that
limn→∞ an = 0. Show that there exist infinitely many n ∈ N with the following
property:

am ≤ an for every m ≥ n.

Problem 2. Let {an}n∈N be a sequence of nonnegative real numbers such that
limn→∞ an = 0 and

|an − an+1| ≤
1

n2
for every n ∈ N.

Prove that the alternating series
∑∞
n=1(−1)n−1an converges.

Problem 3. Denote by X the collection of all sequences x = {xn}n∈N with the
property that xn ∈ [0, 1] for every n ∈ N. Define a metric on X by

d(x, y) = sup
n∈N
|xn − yn|, x = {xn}n∈N, y = {yn}n∈N ∈ X.

Let f : X → R be a uniformly continuous function. Show that f is bounded.
(NOTE: Take for granted the fact that d is in fact a metric. The conclusion is not
correct if f is just continuous.)

Problem 4. Define a sequence {an}n∈N as follows:

a1 = 1, a2 =
√

2, a3 =

√
2
√

3, . . . , an =

√
2

√
3

√
· · ·
√
n, n ≥ 3.

Show that the sequence converges in R.

Problem 5. Let f : R2 → R be a differentiable function such that f(0, 0) = 0.
Show that the improper integral∫∫

x2+y2≤1

f(x, y)

(x2 + y2)4/3
dxdy

converges, that is,

lim
ε↓0

∫∫
ε≤x2+y2≤1

f(x, y)

(x2 + y2)4/3
dxdy

exists.

Problem 6. Let f : R → (0,+∞) be a differentiable function such that f ′(x) >
f(x) for every x ∈ R.

(1) Show that there exists a constant k > 0 such that

(0.1) lim
x→∞

f(x)e−kx = +∞.

(2) Find the least upper bound of the numbers k for which (0.1) can be proved.
1
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Problem 7. Let f : R → R be a differentiable function such that f ′ is uniformly
continuous and limx→+∞ f(x) = 2020. Does the limit limx→+∞ f ′(x) necessarily
exist? (NOTE: Prove if true, provide an example if false.)

Problem 8. Let f : R → R be a continuous function such that f(x + 1) = f(x)
for every x ∈ R. Define functions fn : R→ R, n ∈ N, as follows:

f1(x) = f(x), fn(x) =
1

2
(fn−1(x− 2−n) + fn−1(x+ 2−n)), x ∈ R, n ≥ 2.

Show that the sequence {fn}n∈N converges uniformly on R.

Problem 9. Let f : R2 → R2 be a continuously differentiable function. Suppose
that the Jacobian determinant detDf(0, 0) is equal to zero. Show that for every
ε > 0 there exist M, δ > 0 with the following property:

If Br is the closed disk of radius r < δ centered at (0, 0), then f(Br) is
contained in a rectangle with sides Mr and εr.



Analysis Tier I exam

August 2020

Instructions:

1. Be sure to fully justify all answers.

2. Please write on only one side of each sheet of paper. Begin each problem on a new
sheet, and be sure to write a problem number on each sheet of paper.

3. Please assemble your test with the problems in the proper order.

4. Each problem is worth 11 points.

Problem 1. Let x0 > 0 be a fixed real number and consider the sequence

xn+1 =
1

2

(
xn +

4

xn

)
, if n = 0, 1, 2, 3, . . . ,

(a) Show that xn+1 ≥ 2 , if n ≥ 0.
(b) Show that xn+1 ≤ xn , if n ≥ 1.
(c) Show that x = limn→∞ xn exists.
(d) Find x.

Problem 2. Find the value of
∫∫

E F · n dS where F(x, y, z) = (yz2, sinx, x2), E is the

upper half of the ellipsoid {x2 + y2 + 4z2 = 1, 0 ≤ z}, and n is the outward pointing unit
normal vector on the ellipsoid.

Problem 3. Find the value of∫∫
D

1

4x+ y
exp

(
2x+ y

4x+ y

)
dxdy

where D is the quadrilateral with vertices (1,−2), (1/2,−1), (1,−3), (2,−6).

Problem 4. Find the absolute minimum of the function f : R4 → R given by

f(x, y, z, w) = x2y + y2z + z2w + w2x

on the set

S = {(x, y, z, w) ∈ R4 : xyzw = 1 and x > 0, y > 0, z > 0, w > 0} .

Problem 5. Set a0 := 0 and define for k ≥ 1

ak =

√
1 +

1

2
+ . . .+

1

k
.
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Assume furthermore that bk is sequence of positive real numbers such that
∑∞

k=1 b
2
k < ∞,

and that f : R2 → R is a continuous, positive valued function so that

f(x) ≤ bk when ak−1 ≤ |x| ≤ ak

for k = 1, 2, 3, . . .. Show that the improper integral
∫
R2 f(x) dx exists.

Problem 6. Let f be a continuous function on [0, 1] and twice differentiable on (0, 1) such

that f(0) = f(1) = 0 and |f ′′
(x)| < 2 for all x ∈ (0, 1).

(a) Show that f(x) ≥ x2 − x for all x ∈ [0, 1].

(b) Show that ∣∣∣∣∫ 1

0
f(x) dx

∣∣∣∣ ≤ 1

6
.

Problem 7. Let f : R2 → R2 be a differentiable map (but not necessarily continuously dif-
ferentiable) with component functions f1 and f2, that is f(x1, x2) = (f1(x1, x2), f2(x1, x2))
for all (x1, x2) ∈ R2. Suppose that for all (x1, x2) ∈ R2, one has∣∣∣∣∂f1∂x1

(x1, x2)− 2

∣∣∣∣+ ∣∣∣∣∂f1∂x2
(x1, x2)

∣∣∣∣+ ∣∣∣∣∂f2∂x1
(x1, x2)

∣∣∣∣+ ∣∣∣∣∂f2∂x2
(x1, x2)− 2

∣∣∣∣ ≤ 1

2

Prove that f is one-to-one1 on R2.

Problem 8. Let I be the interval [0, 1], and let f : I → R be a continuous function such
that ∫

I
f(x)xn dx = 0 for all n = 3, 4, 5 . . . .

Show that f(x) = 0 for all x ∈ I.

Problem 9. Let fn : [0, 1]→ [0, 1] be a sequence of functions that converge uniformly to a
limit function f : [0, 1] → [0, 1]. Assume that each fn maps compact sets to compact sets.
Is it true that f also maps compact sets to compact sets? Note that we do not assume that
the fn are continuous. Either give a proof, or provide a detailed counterexample.

1i.e., injective
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August 2021

Instructions: There are nine problems, each of equal value. Justify all of your
steps, either by direct reasoning or by reference to an appropriate theorem.

1. Let N be the set of positive integers. De�ne a distance function d :
N × N → [0,∞) such that (N, d) is a metric space that is not complete. Verify
that your choice for d is indeed a metric, and that (N, d) is not complete.

2. Find all values of x and y minimizing the function f(x, y) = x/y + y/x
on the set x, y > 0, x2 + 2y2 = 3.

3. Let P be the solid parallelepiped in R3 with vertices p0 = (0, 0, 0), p1 =
(1, 2, 3), p2 = (2,−1, 5), p3 = (−1, 7, 4), p4 = (3, 1, 8), p5 = (0, 9, 7), p6 =
(1, 6, 9), and p7 = (2, 8, 12). (Note: If the pi are considered as vectors, then
p4 = p1 + p2, p5 = p1 + p3, p6 = p2 + p3, and p7 = p1 + p2 + p3.) Evaluate

ˆ ˆ ˆ
P

(−x+ 3y + z) dx dy dz.

4. Let E be the square-based pyramid in R3 with top vertex (1, 2, 5) and base
{(x, y, 0) : 0 ≤ x ≤ 3, 0 ≤ y ≤ 3}, and let S1, S2, S3, S4 be the four triangular
sides of E. De�ne the vector �eld F : R3 → R3 by

F(x, y, z) = (3x− y + 4z, x+ 5y − 2z, x2 + y2 − z).

Find
4∑

j=1

ˆ ˆ
Sj

F · n dA,

where n is chosen to be the unit normal vector to Sj with a positive component
in the z direction, and dA indicates that the integral is with respect to surface
area on Sj .

5. The improper integral
´∞
0

g(x) dx of a continuous function g is de�ned

as limR→∞
´ R
0

g(x) dx when this limit exists. Let f be continuous on R2, and

suppose that
´∞
0

f(x, y) dy exists for every x ∈ [0, 1]. Assume there is a positive
constant C such that∣∣∣∣ˆ ∞

z

f(x, y) dy

∣∣∣∣ ≤ C

log(2 + z)
, for z > 0 and 0 ≤ x ≤ 1.

Show that
´ 1
0

[ ´∞
0

f(x, y) dy
]
dx =

´∞
0

[´ 1
0
f(x, y) dx

]
dy.

1



6. Assume a1 ∈ (0, 1) and

an+1 = a3n − a2n + 1, for n = 1, 2, 3, . . . .

(a) Prove that {an}∞n=1 converges and �nd its limit.
(b) For bn = a1a2 · · · an, prove that {bn}∞n=1 converges and �nd its limit.

7. Let {fn}∞n=1 be a uniformly bounded sequence of continous functions

de�ned on [0, 1]× [0, 1], and let Fn(x, y) =
´ 1
y

[´ 1
x
s−1/2t−1/3fn(s, t)ds

]
dt.

(a) Show that, for each n, Fn(x, y) is well-de�ned (possibly as an iterated
improper integral) for (x, y) ∈ [0, 1]× [0, 1]. (Recall that the improper integral´ 1
0
g(u) du of a continuous function g on (0, 1] is de�ned as limε→0+

´ 1
ε
g(u) du

when this limit exists.)
(b) Show that the sequence {Fn}∞n=1 has a subsequence {Fnj}∞j=1 that con-

verges uniformly on [0, 1]× [0, 1] to a continuous limit F.

8. We let log x be the natural logarithm (in base e). Is the series∑
n≥100

1

(log n)log logn

convergent or divergent? Justify your answer.

9. Suppose F : R3 → R is continuous, and for each (x, y) ∈ R2, z 7→
F (x, y, z) is a strictly increasing function of z. Suppose that F (x0, y0, z0) = 0.

(a) Prove that there exists an open neighborhood U of (x0, y0) in R2 such
that there is a unique function g : U → R with F (x, y, g(x, y)) = 0 for all
(x, y) ∈ U.

(b) Show that g is continous on U.

2
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JANUARY 4, 2022

The complete solution to each of the problems below is worth 10 points, so 90
is the maximum score. Please write your solutions on separate sheets, use only one
side of each sheet, and make sure each page is labeled with a problem number.

(1) Define continuous functions fn : [0, 1]→ R by

fn(x) =
1 + xn

1 + 2−n
, x ∈ R, n ∈ N.

Show that the sequence (fn)n∈N is not equicontinuous on [0, 1].

(2) Let (an)n∈N be a sequence of real numbers such that

∞∑
n=1

|an − an+1| < +∞.

Show that (an)n∈N is a convergent sequence.

(3) Let f : R→ [0,+∞) be a differentiable function such that both f and −f ′
are nonincreasing on R. Prove that

lim
x→+∞

f ′(x) = 0.

(4) Let G ⊂ R5 be the set of vectors A = (a0, a1, a2, a3, a4) with the property
that the quintic polynomial

PA(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + x5

has five distinct real roots. Prove that G is an open set.

(5) Does the improper integral∫ ∞
0

cos(x2/3) dx

converge? Justify your answer.

(6) Let t0 be an arbitrary real number. Define a sequence (tn)n∈N by setting
tn = sin(cos(tn−1)) for n ≥ 1. Prove that this sequence converges and that
the limit does not depend of t0.

(7) Suppose that (an)n∈N is an unbounded, increasing sequence of positive
numbers. Show that the series

∞∑
n=1

an+1 − an
an

diverges.

1
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(8) Suppose that f : R2 → R is a continuous, compactly supported function.
Define a new function g : R2 → R by

g(x) =

∫
R2

f(y)

|x− y|
dy, x ∈ R2.

Prove that the improper integral does in fact converge and that the function
g is continuous. (Here x = (x1, x2), y = (y1, y2), |x| =

√
x21 + x22, and dy =

dy1dy2. Convergence of the improper integral means that the Riemann
integral ∫

ε<|x−y|<1/ε

f(y)

|x− y|
dy

has a limit as ε ↓ 0.)

(9) Let F1(x, y, z) = 6yz, F2(x, y, z) = 2xz, F3(x, y, z) = 4xy, and let α, γ :
[−π, π]→ R3 be defined by

α(t) = (cos(t), sin(t), 0),

γ(t) = (cos(t), sin(t), 4 + (sin(t))(cos(t3))).

(a) Apply Stokes’ Theorem on the surface
S = {(cos(t), sin(t), z) : −π ≤ t ≤ π, 0 ≤ z ≤ 4 + (sin(t))(cos(t3))}
to express ∫

γ

(F1dx+ F2dy + F3dz)

in terms of ∫
α

(F1dx+ F2dy + F3dz).

(b) Use (a) to evaluate the first integral.
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