TIER I ANALYSIS EXAM, JANUARY 2019

Solve all nine problems. They all count equally. Show all computations.

1. Let $f: \mathbb{R} \to [0,1]$ be continuous. Let $x_1 \in (0,1)$. Define x_n via the recurrence

$$x_{n+1} = \frac{3}{4}x_n^2 + \frac{1}{4}\int_0^{|x_n|} f, \quad n \ge 1.$$

Prove that x_n is convergent and find its limit.

2. Suppose (X, d) is a compact metric space with an open cover $\{U_a\}$. Show that for some $\epsilon > 0$, every ball of radius ϵ is fully contained in at least one of the U_a 's.

3. Find

$$\lim_{N \to \infty} \sum_{n=N}^{\infty} \frac{1}{n^{1 + \frac{1}{\log N}}}.$$

Here log is the natural logarithm (in base e)

4. (a) Give an example of an everywhere differentiable function $f: \mathbb{R} \to \mathbb{R}$ whose derivative f'(x) is not continuous.

(b) Show that when $f,g:\mathbb{R}\to\mathbb{R}$ are functions, and for every $\epsilon>0$, there exists a $\delta=\delta(\epsilon)>0$ such that $|h|<\delta$ guarantees

$$\left| \frac{f(x+h) - f(x)}{h} - g(x) \right| < \epsilon$$

for all $x \in \mathbb{R}$, then f' exists and is continuous at every $x \in \mathbb{R}$.

5. (a) Give an example of a continuous function on (0,1] that attains neither a max nor a min on (0,1].

(b) Show that a uniformly continuous function on (0,1] must attain either a max or a min on (0,1].

6. Assume $f:(0,1)^2\to\mathbb{R}$ is continuous and has partial derivative $\frac{\partial f}{\partial x}$ at each point (x,y) satisfying

$$\left|\frac{\partial f}{\partial x}(x,y)\right| \ge 1.$$

Consider the set

$$S_{\delta} = \{(x, y) \in (0, 1)^2 : |f(x, y)| \le \delta\}.$$

Prove that the area of S_{δ} is less than or equal to 4δ for each $\delta > 0$.

7. Prove that there are real-valued continuously differentiable functions u(x,y) and v(x,y) defined on a neighborhood of the point $(1,2) \in \mathbb{R}^2$ that satisfy the following system of equations,

$$xu^2 + yv^2 + xy = 4$$
$$xv^2 + yu^2 - xy = 1.$$

- 8. Consider the upper hemi-ellipsoid surface $\Sigma = \left\{ (x,y,z) \in \mathbb{R}^3 : \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \text{ and } z \geq 0 \right\}$ for positive constants $a,b,c \in \mathbb{R}$ and define the vector field $\vec{F} = (\partial_y f, -\partial_x f, 2)$ on Σ for some smooth function $f: \mathbb{R}^3 \to \mathbb{R}$. Evaluate the surface integral $\int_{\Sigma} \vec{F} \cdot \vec{n} \ dS$, where \vec{n} is the upper/outward pointing unit normal field of Σ .
- **9.** Let $f: \mathbb{R}^2 \to \mathbb{R}$ be continuous and suppose that for some R > 0, $|f(x,y)| < e^{-\sqrt{x^2 + y^2}}$ whenever $\sqrt{x^2 + y^2} \ge R$.
 - (a) Show that the integral

$$g(s,t) = \int \int_{\mathbb{R}^2} f(x,y) ((x-s)^2 + (y-t)^2) dxdy$$

converges for all $(s,t) \in \mathbb{R}^2$

(b) Show that g is continuous on \mathbb{R}^2 .