Analysis Tier I Exam August 2015

- Be sure to fully justify all answers.
- Scoring: Each problem is worth 10 points.
- Please write on only one side of each sheet of paper. Begin each problem on a new sheet, and be sure to write a problem number on each sheet of paper.
- Please be sure that you assemble your test with the problems presented in correct order.
- 1. Let f(x) be a continuous function on (0,1] and

$$\liminf_{x \to 0^+} f(x) = \alpha, \quad \limsup_{x \to 0^+} f(x) = \beta.$$

Prove that for any $\xi \in [\alpha, \beta]$, there exist $\{x_n \in (0,1] \mid n = 1, 2, \cdots\}$ such that

$$\lim_{n \to \infty} f(x_n) = \xi.$$

2. Let f(x) be a function which is defined and is continuously differentiable on an open interval containing the closed interval [a,b], and let

$$f^{-1}(0) = \{x \in [a, b] \mid f(x) = 0\}.$$

Assume that $f^{-1}(0) \neq \emptyset$, and for any $x \in f^{-1}(0)$, $f'(x) \neq 0$. **Prove** the following assertions:

- (a) $f^{-1}(0)$ is a finite set;
- (b) Let p be the number of points in $f^{-1}(0)$ such that f'(x) > 0, and q be the number of points in $f^{-1}(0)$ such that f'(x) < 0. Then

$$|p-q| \leq 1$$
.

3. Let $\sum_{n=1}^{\infty} a_n$ be a convergent positive term series $(a_n \ge 0 \text{ for all } n)$. Show that $\sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n}$ converges. Is the converse true?

- **4.** Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable with f' uniformly continuous. Suppose $\lim_{x \to \infty} f(x) = L$ for some L. Does $\lim_{x \to \infty} f'(x)$ exist?
- **5.** Let $E \subset \mathbb{R}$ be a set with the property that any countable family of closed sets that cover E contains a finite subcollection which covers E. Show that E must consist of finitely many points.
- **6.** Suppose that a function f(x) is defined as the sum of a series:

$$f(x) = 1 - \frac{1}{(2!)^2} (2015x)^2 + \frac{1}{(4!)^2} (2015x)^4 - \frac{1}{(6!)^2} (2015x)^6 + \dots$$
$$= \sum_{k=0}^{\infty} (-1)^k \frac{1}{((2k)!)^2} (2015x)^{2k}.$$

Evaluate

$$\int_0^\infty e^{-x} f(x) \, dx.$$

- **7. Find** the volume of the solid S in \mathbb{R}^3 , which is the intersection of two cylinders $C_1 = \{(x, y, z) \in \mathbb{R}^3; \ y^2 + z^2 \le 1\}$ and $C_2 = \{(x, y, z) \in \mathbb{R}^3; \ x^2 + z^2 \le 1\}$.
- **8.** Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be continuous. Suppose that f has the property that for any compact set $K \subset \mathbb{R}^m$, the set $f^{-1}(K) \subset \mathbb{R}^n$ is bounded. **Prove** that $f(\mathbb{R}^n)$ is a closed subset of \mathbb{R}^m , **or give** a counterexample to this claim.
- **9.** Let $F: \mathbb{R}^2 \to \mathbb{R}$ have continuous second-order partial derivatives. **Find all points** where the condition in the implicit function theorem is satisfied so that F(x-y,y-z)=0 defines an implicit function z=z(x,y), and **derive** explicit formulas, in terms of partial derivatives of F, for

$$\frac{\partial z}{\partial x}$$
, $\frac{\partial z}{\partial y}$, $\frac{\partial^2 z}{\partial x \partial y}$.

10. Suppose that a monotone sequence of continuous functions $\{f_n\}_{n=1}^{\infty}$ converges pointwise to a continuous function F on some closed interval [a,b]. **Prove** that the convergence is uniform.

Note: In this problem by a monotone sequence of functions we mean a sequence f_n such that either $f_n(x) \leq f_{n+1}(x)$ for all n and all $x \in [a, b]$, or $f_n(x) \geq f_{n+1}(x)$ for all n and all $x \in [a, b]$.