Tier 1 Analysis Exam

January 2008

1. Give an example of a function $f:[0,\infty)\to\mathbb{R}$ that satisfies the three conditions:

(i)
$$f(x) \ge 0$$
 for all $x \ge 0$,

(ii) for every
$$M > 0$$
, $\sup_{x > M} f(x) = \infty$, (iii) $\int_0^\infty f(x) dx < \infty$,

(iii)
$$\int_0^\infty f(x) dx < \infty$$
,

or else prove that no such function exists.

2. Determine whether the series

$$\sum_{n=1}^{\infty} \ln \left(n \sin \frac{1}{n} \right)$$

is convergent (conditionally or absolutely) or divergent.

3. Let S be a closed, nonempty subset of \mathbb{R}^n that is convex in the sense that if q_1 and q_2 are any two points in S, then $\lambda q_1 + (1-\lambda)q_2 \in S$ for all $\lambda \in (0,1)$. Given any $p \in \mathbb{R}^n \setminus S$, let

$$m = \inf_{q \in S} \{ \|p - q\| \}$$

where $\|\cdot\|$ denotes the usual Euclidean norm. Prove that there exists exactly one point $q \in S$ that achieves this infimum.

4. Define $f: \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x,y) = \frac{xy^2}{x^2 + y^2}$$

for $(x,y) \neq (0,0)$, and f(0,0) = 0. Notice that f is C¹ on $\mathbb{R}^2 \setminus \{(0,0)\}$.

- (i) Show that f is continuous at (0,0).
- (ii) Show that all the directional derivatives of f at (0,0) exist by calculating the directional derivative of f at (0,0) in the direction V, for any given unit vector $V = (\cos \theta, \sin \theta)$. (Recall that the directional derivative of f at a point p in direction V is by definition, $\frac{d}{dt}\Big|_{t=0} f(p+tV)$.)
- (iii) Show that f is not differentiable at (0,0).
- 5. Let $f=(f_1,f_2):\mathbb{R}^2\to\mathbb{R}^2$ be continuously differentiable, and assume that the 2×2 matrix $Df(x) = \left(\frac{\partial f_i}{x_j}(x)\right)$ is invertible for all $x \in \mathbb{R}^2$. Assume moreover that, for any

compact set $K \subset \mathbb{R}^2$, $f^{-1}(K)$ is compact. Prove that f is onto.

- 6. Let f be a continuous function on $[0, \infty)$ such that $0 \le f(x) \le Cx^{-1-\rho}$ for all x > 0, and for some constants $C, \rho > 0$. Let $f_k(x) = kf(kx)$.
 - (i) Show that $\lim_{k\to\infty} f_k(x) = 0$ for any x > 0 and that the convergence is uniform on $[r, \infty)$ for any r > 0.
 - (ii) Show that f_k does not converge to zero uniformly on $(0, \infty)$, unless f is identically 0.
- 7. Let f and f_k be defined as in the previous problem.
 - (i) Show that the limit $\lim_{k\to\infty} \int_0^1 f_k(x) dx$ exists.
 - (ii) Denote by a the limit in (i). Show that $\lim_{k\to\infty} \int_0^1 f_k(x)g(x) dx = ag(0)$ for any Riemann integrable function g on [0,1] that is continuous at 0.

(Note: The result of the previous problem is not necessarily needed for solving this problem.)

8. Let $f:[0,1]\to\mathbb{R}$ be a differentiable function such that $|f'(x)|\leq M$ for all $x\in(0,1)$. Show that, for any positive integer n

$$\left| \int_0^1 f(x) \, dx - \frac{1}{n} \sum_{k=1}^n f(\frac{k-1}{n}) \right| \le \frac{M}{n} .$$

9. Consider the quartic equation with real coefficients

$$x^4 + a_0 x^3 + a_1 x^2 + 2a_2 x + a_3 = 0 .$$

Show that there exists $\delta > 0$ such that if $|a_i - 1| < \delta$, i = 0, 1, 2, 3, then the equation above has a real solution which depends smoothly on the a_i 's.

10. Compute the line integral

$$\int_C \frac{x \, dy - y \, dx}{x^2 + y^2} \; ,$$

where C is a simple closed C^1 curve around the origin of the xy-plane, and oriented counterclockwise.