Tier I exam in analysis - January 2005

Solve all problems. Justify your answers in detail. The exam’s duration is 3 hours

1. Define
S=A{(z,y,2) e B°, 2?+2*+322 =1}, f(r,y,2)=a+y+z

a. Prove that S is a compact set.
b. Find the maximum and minimum of f on S.
2. Let g : [0,1] x [0,1] — R be a continuous function, and define functions f, :

[0,1] — R by

1
@)= [ geyydy we01n=1.2...

Show that the sequence (f,,)>2, has a subsequence which converges uniformly on
[0, 1].

3. Consider the subset H = {(a, b, c,d, e)} of R® such that the polynomial
art + bz + cx® +do + e

has at least one real root.
a. Prove that (1,2, —4,3,—2) is an interior point of H

b. Find a point in H that is not an interior point. Justify your claim.

4. Consider a twice differentiable function f : R — R, a number a € R, and h > 0.
Show that there exists a point ¢ € R such that

fla) —2f(a+h)+ f(a+2n) = h2f"(c).

5. Prove or give a counterexample: If f(z) is differentiable for every z € R, and if
f'(0) = 1, then there exists 6 > 0 such that f(x) is increasing on (—4,4).



6. Let f(z) be a bounded function on (0, 2). Suppose that for every z,y € (0,2), = #
y, there exists z € (0,2) such that

a. Show that f need not be a differentiable function.

b. Suppose that such a z can always be found between = and y. Show that f is
twice differentiable.

7. Consider the torus
T ={x=(a+rsinu)cosv, y= (a+rsinu)sinv, z=rcosu,
0<r<b 0<u<2m0<v<2r}
where a > b. Find the volume and surface area of T

8. Let 2 be a bounded subset of R", and f : 2 — R" a uniformly continuous function.
Show that f must be bounded.



Outline of Solutions:

1. a. It suffices to show that S is closed and bounded. Closeness follows since
S = {h7Y(1)}, for a continuous function h. Boundedness follows since clearly S is
contained in the cube [—1,1]3.

b. Both maximum and minimum are obtained at internal points on S, and can

therefore be found by the Lagrange method. The Lagrange equations imply at
once that A # 0, and % = x = 2y = 3z. Solving from S we find that the maximal

value is 1/11/6, and the minimal value is its negative.

2. fn(0) =0, and the functions f,, are equicontinuous because
[fu(@) = fl@)] < suplg(z,y) — 9(+', )],

and this quantity tends to zero as |z — 2’| — 0 by the continuity of g. This
Arzela-Ascoli applies.

3. Write the polynomial 2* + 223 — 422 + 32 — 2. Obviously z = 1 is a root, so the
triplet is indeed in H.

Define the function F(a,b,c,d,e, f,z) = az* + bx® + cx®* + ed + f. Clearly
F(1,2,-4,3,-2,1) = 0, while F, = 5 #= 0 at that point. Therefore there
exists an open neighborhood U of (1,2, —4, 3, —2) and a C* function g such that
for all points (a, b, c,d,e) in U we have F(a,b,c,d, e, g(a,b,c,d e)) = 0.

Clearly (0,0,1,0,0) is in H. But the the points (0,0, 1,0, 4?) are not in the set
for 1 # 0 (Since 22 + p? has no real root).

4. Apply the mean-value theorem to the function F(x) = f(z + h) — f(x) to get
fla) —2f(a+h)+ f(a+2h) = F(a+ h) — F(a) = hF'(d) = h(f'(d+ h) — f'(d))
for some d, then apply MVT again to the right-hand side.

5. Counterexmaple - f(x) = z + 22?sin(1/x).

6. a. Let f=zfor0<xr<1l,and f=1for 1 <z <2
Since f is bounded, lim, ., f(y) = f(z). Furthermore, limx%,M = f(y).

T—y
Therefore f is differentiable. Also, the last identity implies f = f, thus f(z) =

ce®.

7. The Jacobian is given by J = r(a+sinu), and hence V = 2r2ab?. Observing that
the boundary is given by r = b, a simple computation gives ||N|| = ||T, x T,|| =
b(a+ bsinu). Therefore S = 4m2ab. Of course, it is also possible to solve with the
slice method.

8. Choose § > 0 such that |f(x) — f(y)| < 1 whenever |z — y| < §. Assume that f is
not bounded, and choose z;, € Q such that | f(xgy1)| > |f(xx)|+1 for all k. Observe
that |f(x;) — f(zx)| > 1 whenever j # k. However, by Bolzano-Weierstrass, we
must have |x; — x| < 6 for some j # k, which gives a contradiction.



