Tier I Analysis Exam-August 2004

1. (A) Suppose A and B are nonempty, disjoint subsets of \mathbb{R}^n such that A is compact and B is closed. Prove that there exists a pair of points $a \in A$ and $b \in B$ such that

$$\forall x \in A, \ \forall y \in B, \quad \|x - y\| \ge \|a - b\|.$$

Prove this fact from basic principles and results; do not simply cite a similar or more general theorem. Here and in what follows, $\|.\|$ denotes the usual Euclidean norm: for $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$, $\|x\| = (x_1^2 + x_2^2 + \cdots + x_n^2)^{1/2}$.

- (B) Suppose that in problem (A) above, the assumption that the set A is compact is replaced by the assumption that A is closed. Does the result still hold? Justify your answer with a proof or counterexample.
- **2.** (A) Prove the following classic result of Cauchy: Suppose $r(1), r(2), r(3), \ldots$ is a monotonically decreasing sequence of positive numbers. Then $\sum_{k=1}^{\infty} r(k) < \infty$ if and only if $\sum_{n=1}^{\infty} 2^n r(2^n) < \infty$.
- (B) Use the result in part (A) to prove the following theorem: Suppose a_1, a_2, a_3, \ldots is a monotonically decreasing sequence of positive numbers such that $\sum_{n=1}^{\infty} a_n = \infty$. For each $n \geq 1$, define the positive number $c_n = \min\{a_n, 1/n\}$. Then $\sum_{n=1}^{\infty} c_n = \infty$.
- **3.** Suppose $g:[0,\infty)\to [0,1]$ is a continuous, monotonically increasing function such that g(0)=0 and $\lim_{x\to\infty}g(x)=1$.

Suppose that for each $n=1,2,3,\ldots, f_n:[0,\infty)\to [0,1]$ is a monotonically increasing (but not necessarily continuous) function. Suppose that for all $x\in [0,\infty)$, $\lim_{n\to\infty} f_n(x)=g(x)$. Prove that $f_n\to g$ uniformly on $[0,\infty)$ as $n\to\infty$.

4. Let $x \in \mathbb{R}^3$ and let $f(x) \in C^1(\mathbb{R}^3)$. Further let $n = x/\|x\|$ for $x \neq 0$. Show that the surface integral

$$I \equiv \int_{\|x\|=1} f(x) \, dS_x$$

can be expressed in the form of a volume integral

$$I = \int_{\|x\| < 1} \left(\frac{2}{\|x\|} f(x) + n \cdot \nabla f(x) \right) dx.$$

Hint: Write the integrand in I as $n \cdot (nf)$.

5. Let $x_0 \in \mathbb{R}$ and consider the sequence defined by

$$x_{n+1} = \cos(x_n)$$
 $(n = 0, 1, \ldots)$

Prove that $\{x_n\}$ converges for arbitrary x_0 .

6. Let $\alpha > 0$ and consider the integral

$$J_{\alpha} = \int_{0}^{\infty} \frac{e^{-x}}{1 + \alpha x} dx.$$

Show that there is a constant c such that

$$\alpha^{1/2}J_{\alpha} \le c.$$

7. Consider the infinite series

$$\sum_{n=1}^{\infty} X_n(x) T_n(t)$$

where (x, t) varies over a rectangle $\Omega = [a, b] \times [0, \tau]$ in \mathbb{R}^2 . Assume that

- (i) The series $\sum_{n=1}^{\infty} X_n(x)$ converges uniformly with respect to $x \in$
- (ii) There exists a positive constant c such that $|T_n(t)| \leq c$ for every positive integer n and every $t \in [0, \tau]$;
- (iii) For every t such that $t \in [0, \tau]$, $T_1(t) \le T_2(t) \le T_3(t) \le \dots$

Prove that $\sum_{n=1}^{\infty} X_n(x) T_n(t)$ converges uniformly with respect to both

variables together on Ω . **Hint:** Let $S_N = \sum_{n=1}^N X_n(x) T_n(t)$, $s_N = \sum_{n=1}^N X_n(x)$. For m > n find an expression for $S_m - S_n$ involving $(s_k - s_n)$ for an appropriate range of values of k.

8. Let $v(x) \in C^{\infty}(\mathbb{R})$ and assume that for each γ in a neighborhood of the origin there exists a function $u(x, v, \gamma)$ which is C^{∞} in x such that

$$\gamma \frac{\partial}{\partial x}(u+v) = \sin(u-v).$$

Assuming that

$$u = u_0 + \gamma u_1 + \gamma^2 u_2 + \gamma^3 u_3 + \dots$$

where $u_0(0) = v(0)$ and for all n the u_n 's are functions of v but are independent of γ , find u_0 , u_1 , u_2 and u_3 .

- **9.** All partial derivatives $\partial^{m+n} f/\partial x^m \partial y^n$ of a function $f: \mathbb{R}^2 \to \mathbb{R}$ exist everywhere. Does it imply that f is continuous? Prove or give a counterexample.
 - 10. Decide whether the two equations

$$\sin(x+z) + \ln(yz^2) = 0$$
, $e^{x+z} + yz = 0$,

implicitly define (x, y) near (1, 1) as a function of z near -1.