Tier 1 Analysis Exam January 2003

- 1. Consider a function $f: \mathbb{R} \to \mathbb{R}$. Which of the following statements is equivalent to the continuity of f at 0? (Provide justification for each of your answers.)
 - a) For every $\varepsilon \geq 0$ there exists $\delta > 0$ such that $|x| < \delta$ implies $|f(x) f(0)| \leq \varepsilon$.
 - b) For every $\varepsilon > 0$ there exists $\delta \ge 0$ such that $|x| < \delta$ implies $|f(x) f(0)| \le \varepsilon$.
 - c) For every $\varepsilon > 0$ there exists $\delta > 0$ such that $|x| \le \delta$ implies $|f(x) f(0)| \le \varepsilon$.
- 2. Consider a uniformly continuous real-valued function f defined on the interval [0,1). Show that $\lim_{t\to 1^-} f(t)$ exists. Is a similar statement true if [0,1) is replaced by $[0,\infty)$?
- 3. Let f be a real-valued continuous function on [0,1] such that f(0)=f(1). Show that there exists $x \in [0,1/2]$ such that f(x)=f(x+1/2).
- 4. If f is differentiable on [0,1] with continuous derivative f', show that

$$\int_0^1 |f(x)| dx \le \max \left\{ \left| \int_0^1 f(x) dx \right|, \int_0^1 |f'(x)| dx \right\}$$

- 5. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be continuous and with compact support, i.e. there exists R > 0 such that f(x,y) = 0 if $x^2 + y^2 \ge R^2$.
 - a) Show that the integral

$$g(u,v) = \iint_{\mathbb{R}^2} \frac{f(x,y)}{\sqrt{(x-u)^2 + (y-v)^2}} dxdy$$

converges for all $(u, v) \in \mathbb{R}^2$, and show that g(u, v) is continuous in (u, v).

1

b) Show that, if in addition f has continuous first order partial derivatives, then so does g and

$$\frac{\partial g}{\partial u}(u,v) = \iint_{\mathbb{R}^2} \frac{\frac{\partial f}{\partial x}(x,y)}{\sqrt{(x-u)^2 + (y-v)^2}} dx dy.$$

6. Show that for any two functions f, g which have continuous second order partial derivatives, defined in a neighborhood of the sphere $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ in \mathbb{R}^3 , one has

$$\int\limits_{S} (\nabla f \times \nabla g) \cdot \mathbf{dS} = 0$$

where ∇f , ∇g are the gradient of f, g respectively.

- 7. Show that if $\{x_n\}$ is a bounded sequence of real numbers such that $2x_n \leq x_{n+1} + x_{n-1}$ for all n, then $\lim_{n \to \infty} (x_{n+1} x_n) = 0$.
- 8. For a non-empty set X, let \mathbb{R}^X be the set of all maps from X to \mathbb{R} . For $f, g \in \mathbb{R}^X$, define

$$d(f,g) = \sup_{x \in X} \frac{|f(x) - g(x)|}{1 + |f(x) - g(x)|}.$$

- a) Show that (\mathbb{R}^X, d) is a metric space.
- b) Show that $f_n \to f$ in (\mathbb{R}^X, d) if and only if f_n converges uniformly to f.
- 9. Show that if $f:[0,1]\to\mathbb{R}$ is continuous, and $\int_0^1 f(x)x^{2n}dx=0,\ n=0,1,2,\cdots$ then f(x)=0 for all $x\in[0,1]$.
- 10. a) Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function. Show that for any $x, y \in \mathbb{R}^n$, there exists $z \in \mathbb{R}^n$ such that

$$f(x) - f(y) = Df(z) \cdot (x - y)$$

where Df(z) denotes the derivative matrix of f (in this case it is the same as the gradient of f) at z, and "·" denotes the usual dot product in \mathbb{R}^n .

b) Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a differentiable map. Show that if f has the property that $||Df(z) - I|| < \frac{1}{2n}$ for all $z \in \mathbb{R}^n$, where I is the $n \times n$ identity matrix, then f is a diffeomorphism, i.e. f is one-to-one, onto and f^{-1} is also differentiable. (For a matrix $A = (a_{ij}), ||A|| = (\sum_{i,j} a_{ij}^2)^{1/2}$.)