1. In the classical false position method to find roots of f(x) = 0, one begins with two approximations x_0 , x_1 and generates a sequence of (hopefully) better approximations via

$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_0}{f(x_n) - f(x_0)}$$
 for $n = 1, 2, ...$

Consider the following sketch in which the function f(x) is to be increasing and convex:

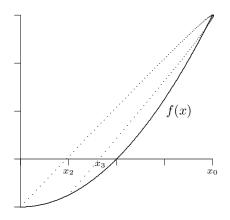


Fig. 1.2

The sequence $\{x_n\}$ is constructed as follows. We begin with the two approximations $(x_0, f(x_0))$ and $(x_1, f(x_1)) = (0, f(0))$ The chord is drawn between these two points; the point at which this chord crosses the x-axis is taken to be the next approximation x_2 . One then draws the chord between the two points $(x_0, f(x_0))$ and $(x_2, f(x_2))$. The next approximation x_3 is that point where this chord crosses the axis, as shown. For f strictly increasing and convex and for initial approximations $x_0 > 0$, $x_1 = 0$ with $f(x_0) > 0$, $f(x_1) < 0$, prove rigorously that this sequence must converge to the unique solution of f(x) = 0 over $[x_1, x_0]$.

2. (a) Show that it is possible to solve the equations

$$xu^{2} + yzv + x^{2}z - 3 = 0$$
$$xyv^{3} + 2zu - u^{2}v^{2} - 2 = 0$$

for (u, v) in terms of (x, y, z) in a neighborhood of (1, 1, 1, 1, 1).

(b) Given that the inverse of the matrix

$$\begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} \quad \text{is} \quad \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 \end{pmatrix}$$

find $\frac{\partial u}{\partial x}$ at (1,1,1).

- 3. Let X be a complete metric space and let Y be a subspace of X. Prove that Y is complete if and only if it is closed.
- 4. Suppose $f: K \to \mathbb{R}^1$ is a continuous function defined on a compact set K with the property that f(x) > 0 for all $x \in K$. Show that there exists a number c > 0 such that $f(x) \ge c$ for all $x \in K$.
- 5. Let f(x) be a continuous function on [0,1] which satisfies

$$\int_0^1 x^n f(x) \, dx = 0 \quad \text{for all} \quad n = 0, 1, \dots$$

Prove that f(x) = 0 for all $x \in [0, 1]$.

- 6. Show that the Riemann integral $\int_0^\infty \frac{\sin x}{x} dx$ exists.
- 7. Let

$$G(x,y) = \begin{cases} x(1-y) & \text{if } 0 \le x \le y \le 1\\ y(1-x) & \text{if } 0 \le y \le x \le 1 \end{cases}$$

Let $\{f_n(x)\}\$ be a uniformly bounded sequence of continuous functions on [0,1] and consider the sequence

$$u_n(x) = \int_0^1 G(x, y) f_n(y) \, dy.$$

Show that the sequence $\{u_n(x)\}$ contains a uniformly convergent subsequence on [0,1].

- 8. Let f be a real-valued function defined on an open set $U \subset \mathbb{R}^2$ whose partial derivatives exist everywhere on U and are bounded. Show that f is continuous on U.
- 9. For $x \in \mathbb{R}^3$ consider spherical coordinates $x = r\omega$ where $|\omega| = 1$ and |x| = r. Let ω_k be the k'th component of ω for any k = 1, 2, 3. Use the divergence theorem to evaluate the surface integral

$$\int_{|\omega|=1} \omega_k \, dS.$$

- 10. Let $\{f_k\}$ be a sequence of continuous functions defined on [a,b]. Show that if $\{f_k\}$ converges uniformly on [a,b], then it also converges uniformly on [a,b].
- 11. Let $f: \mathbb{R}^n \to \mathbb{R}^k$ be a continuous mapping. Show that f(S) is bounded in \mathbb{R}^k if S is a bounded set in \mathbb{R}^n .