TIER I ANALYSIS EXAMINATION

August 24, 2001

NOTATION: For $x \in \mathbb{R}^n$, let |x| denote the Euclidean norm of x (i.e. the Euclidean distance of x from the origin $\vec{0} \in \mathbb{R}^n$).

1. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function such that

$$\frac{\partial f}{\partial x_1}(\vec{0}) = \frac{\partial f}{\partial x_2}(\vec{0}) = 0 .$$

- (a) Does it follow that f differentiable at $x = \vec{0}$? Explain.
- (b) Prove or give a counterexample that f is continuous at $x = \vec{0}$.
- 2. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of real valued, differentiable functions on the real line such that
 - (a) $f_n(x) \to 0$ for each $x \in [0, 1]$
 - (b) $|f'_n(x)| \le 1$ for all $x \in [0, 1]$ and all n = 1, 2, ...

Show that the sequence $\{f_n\}_{n=1}^{\infty}$ converges uniformly on [0,1] to 0.

3. Let $E \subset \mathbb{R}^n$ be nonempty. For $x \in \mathbb{R}^n$ define

$$D(x) \equiv \inf\{|x - y| : y \in E\} .$$

- (a) Show that D is a continuous function on \mathbb{R}^n (under the usual topology on \mathbb{R} and \mathbb{R}^n).
- (b) Show that $\{x \in \mathbb{R}^n : D(x) = |x|\}$ is closed in \mathbb{R}^n .
- 4. Let ω be a smooth 1-form on \mathbb{R}^2 that satisfies

$$\omega \wedge dx = -d(x^2) \wedge dy$$

and

$$\omega \wedge dy = dx \wedge d(y^2).$$

Let $\gamma:[0,1]\to\mathbb{R}^2$ be the differentiable path that joins (0,0) to (-1,4) given by $\gamma(t)=(-\sin\frac{\pi}{2}t,4t^3)$ for $t\in[0,1]$. Compute $\int_{\gamma}\omega$.

5. a) Prove or provide a counterexample to the following statement: If $f: \mathbb{R} \to \mathbb{R}$ is a continuous function, then there exists a real number L such that

$$\lim_{\epsilon \to 0} \int_{\epsilon \le |x| \le 1} \frac{f(x)}{x} dx = L$$

b) What is your answer to part a) if there exist positive constants C and α such that for all $x \neq y \in \mathbb{R}$

$$|f(x) - f(y)| < C|x - y|^{\alpha} ?$$

Again, prove that the limit exists or give a counterexmple.

6. Suppose that for each $j=1,2,\ldots,g_j:[0,1]\to\mathbb{R}$ is a continuous function such that $\int_0^1 |g_j(x)| dx \leq 1000.$ Suppose $h:[0,1]\to\mathbb{R}$ is a continuous function. Suppose that for each $n=0,1,2,\ldots$,

$$\lim_{j\to\infty}\int\limits_0^1 x^ng_j(x)dx=\int\limits_0^1 x^nh(x)dx\;.$$

Let $f:[0,1] \to \mathbb{R}$ be a continuous function. Prove that

$$\lim_{j\to\infty}\int_0^1 f(x)g_j(x)dx = \int_0^1 f(x)h(x)dx.$$

7. Let $f=(f_1,f_2):\mathbb{R}^2\to\mathbb{R}^2$ be defined by $f_1(x_1,x_2)=x_1$ and for $x_2\geq 0$

$$f_2(x_1, x_2) = \begin{cases} x_2 - x_1^2 & \text{if } x_2 \ge x_1^2 \\ \frac{x_2^2}{x_1^2} - x_2, & \text{if } x_1^2 \ge x_2 > 0 \\ 0 & \text{if } x_2 = 0 \end{cases}$$

If $x_2 < 0$, define f_2 by $f_2(x_1, x_2) = -f_2(x_1, -x_2)$. This function f is differentiable at $\vec{0}$, and you may use this fact without proving it, whenever needed, below.

- (a) Show that f is differentiable (at all points in \mathbb{R}^2). Show that $f'(\vec{0}) = \text{identity}$.
- (b) Prove that f is not one-to-one in any small neighborhood of the origin $\vec{0}$.
- (c) State the inverse function theorem. In view of part b), the theorem does not apply to f near the origin $x = \vec{0}$. EXPLAIN. Explicitly what condition of the theorem is not met by the function f (at $\vec{0}$)?
- 8. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be continuously differentiable.
 - (a) Assume that the Jacobian matrix $(\partial f_i/\partial x_j)$ has rank n everywhere. Prove that $f(\mathbb{R}^n)$ is open.
 - (b) Suppose that $f^{-1}(K)$ is compact whenever $K \subset \mathbb{R}^n$ is compact. Prove that $f(\mathbb{R}^n)$ is closed.
 - (c) Assume that the Jacobian matrix $(\partial f_i/\partial x_j)$ has rank n everywhere, and that $f^{-1}(K)$ is compact whenever $K \subset \mathbb{R}^n$ is compact. Prove that $f(\mathbb{R}^n) = \mathbb{R}^n$
- 9. Define the function $g:[0,\infty)\to\mathbb{R}$ as follows:

$$g(x) = \int\limits_0^x \frac{\sin^3 u}{u} du \ .$$

Note that this integral is well defined, since $|\sin u| \le u$ for all u > 0. Prove that $\lim_{x \to \infty} g(x)$ exists in \mathbb{R} . (You don't have to find the limit.)