Tier 1 Exam January, 2001

1. Compute

$$\int_{S} \operatorname{curl} F \cdot N \, dA ,$$

where S is that part of the surface $y=x^2+z^2$ in \mathbb{R}^3 for which $0 \le y \le 1$, N is the unit normal to S pointing toward the y-axis, dA is the area element, and $F: \mathbb{R}^3 \to \mathbb{R}^3$ is the mapping

$$F(x, y, z) = e^{x^2+z^2}(z, y, -x)$$
.

2. Suppose that $f:[0,\infty)\to\mathbb{R}^1$ is a nonnegative, uniformly continuous function and that

$$\int_0^\infty f(x)\ dx < \infty.$$

Prove that $\lim_{x \to \infty} f(x) = 0$.

3. Let $f: \mathbb{R}^2 \to \mathbb{R}^1$ be continuous, and define

$$g(y) = \int_0^1 f(x, y) dx .$$

Assume that $\frac{\partial f}{\partial y}$ is continuous on \mathbb{R}^2 , and compute g'(y). Prove your result.

- 4. The function $\frac{1}{32}x^4 + x^2y^2 x^3 y^3 xy^3$ has critical points at (24,0) and (0,0). By a careful analysis, determine whether each point is a local maximum, local minimum or a point which is neither a local maximum nor a local minimum.
- 5. Let $f: B \to \mathbb{R}^1$ be a uniformly continuous function, where $B \subset \mathbb{R}^n$ is an open ball. Prove that there is a uniformly continuous function F defined on the closure of B such that F restricted to B is equal to f.

6. Let $g: \mathbb{R}^2 \to \mathbb{R}^2$ be defined for points x = (x, y) by

$$g(x,y) = (x^2 + y^2 - |x^2 - y^2|, x^2 + y^2 + |x^2 - y^2|).$$

- (a) Give the definition of the differential of g at x_0 , denoted by $dg(x_0)$.
- (b) Determine those points $x_0 \in \mathbb{R}^2$ where $dg(x_0)$ exists and where it does not exist. In both cases, justify your answer. Be sure to analyze the case $x_0 = 0$.
- (c) Find those points $x_0 \in \mathbb{R}^2$ where g locally has a differentiable inverse and where it does not. In both cases, justify your answer.
- 7. Let n be an integer greater than 1, and consider the following statement: If ω is a differential 2-form on \mathbb{R}^n with the property that $\omega \wedge \lambda = 0$ for every differential 1-form λ , then ω must be the zero form. For what n is the above statement true? For what n is it false? Prove your answers.
- 8. (a) Let $F: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by

$$F(x, y, z) = (z^{2} + xy - 1, z^{2} + x^{2} - y^{2} - 2)$$

and observe that F(a) = (0,0) where a = (-1,0,1). Prove that there exist an open interval (a,b), a C^1 curve of the form $\gamma(t) = (f(t),g(t),h(t))$ with a < t < b, and an open set $U \subset \mathbb{R}^3$ containing a such that

$$U \cap F^{-1}(0,0) = \{\gamma(t) : a < t < b\}$$

- (b) Compute $\gamma'(t_0) = (f'(t_0), g'(t_0), h'(t_0))$ where $\gamma(t_0) = a$.
- 9. Let $f:[0,1] \to \mathbb{R}^1$ be defined by

$$f(x) = \begin{cases} \frac{1}{2^k} & \text{if } \frac{1}{k+1} < x \le \frac{1}{k}, \ k = 1, 2, \dots \\ 0 & \text{for } x = 0 \end{cases}$$

(a) For any given $\varepsilon > 0$, show how to construct a partition P of the interval [0,1] such that

$$U(P, f) - L(P, f) < \varepsilon$$
.

(U(P, f) and L(P, f) are the upper and lower Riemann sums for f over the partition P).

(b) Find an expression for

$$\int_0^1 f(x)dx.$$

and justify your answer.