Tier 1 Analysis Exam

January 2000

- 1. Let Ω be an open set in \mathbb{R}^2 . Let u be a real-valued function on Ω . Suppose that for each point $a \in \Omega$ the partial derivatives $u_x(a)$ and $u_y(a)$ exist and are equal to zero.
 - (i) Prove that u is locally constant, *i.e.* for every point in Ω there is a neighborhood on which u is a constant function.
 - (ii) Prove that if Ω is connected, then u is a constant function on Ω .
- 2. Let S be the surface in the Euclidean space \mathbb{R}^3 given by the equation $x^2+y^2-z^2=1$, $0\leq z\leq 1$, oriented so that the normal vector points away from the z-axis. Find $\int_S \mathbf{F}\cdot\mathbf{dS}$, where \mathbf{F} is the vector field defined by

$$\mathbf{F}(x,y,z) = (-xy^2 + z^5, -x^2y, (x^2 + y^2)z) .$$

- 3. Let $f(x) = e^x \cos x$ for $x \in \mathbb{R}$.
 - (i) Show that on a neighborhood around $x=0,\ f$ has an inverse function g with g(0)=0 .
 - (ii) Compute g''(0).
 - (iii) Show that there exists a>0 such that $f:(-a,\infty)\to (f(-a),\infty)$ is a homeomorphism.
- 4. For positive numbers k_1, k_2, k_3, \ldots we define $[k_1] = \frac{1}{k_1}, [k_1, k_2] = \frac{1}{k_1 + [k_2]},$ $[k_1, k_2, k_3] = \frac{1}{k_1 + [k_2, k_3]}$, and inductively, $[k_1, \ldots, k_{n+1}] = \frac{1}{k_1 + [k_2, \ldots, k_{n+1}]}$. Prove that $\lim_{n \to \infty} [k_1, \ldots, k_n]$ exists if $k_n \geq 2$ for all n.
- 5. Two circular holes of radius 1 in are drilled from the centers of two faces of a solid cube of volume 64 in^3 . Compute the volume of the remaining solid.
- 6. Let $\varphi_1, \ \varphi_2, \ \varphi_3, \ \dots$ be non-negative continuous functions on [-1,1] such that
 - (i) $\int_{-1}^{1} \varphi_k(t)dt = 1$ for $k = 1, 2, 3, \dots$;
 - (ii) for every $\delta \in (0,1)$ $\lim_{k \to \infty} \varphi_k = 0$ uniformly on $[-1, -\delta] \cup [\delta, 1]$.

Prove that for every continuous function $f:[-1,1]\to\mathbb{R}$ we have

$$\lim_{k \to \infty} \int_{-1}^{1} f(t)\varphi_k(t)dt = f(0) .$$

7. Suppose $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$, and let

$$c_n = \frac{a_1 b_n + a_2 b_{n-1} + \dots + a_n b_1}{n} .$$

Prove that $\lim_{n\to\infty} c_n = ab$.

8. Let $f: \mathbb{R} \to \mathbb{R}$ be a uniformly continuous function on \mathbb{R} . Prove that there exist positive constants A and B such that

$$|f(x)| \le A|x| + B$$
 for all $x \in \mathbb{R}$.

9. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function. Suppose $\lim_{x \to \infty} \frac{f(x)}{x} = 1$. Prove that there exists a sequence $\{x_n\}_{n=1}^{\infty}$ such that $\lim_{n \to \infty} x_n = \infty$ and $\lim_{n \to \infty} f'(x_n) = 1$.