TIER I ANALYSIS EXAMINATION August 1999

There is no unusual notation in this exam: R stands for the real line, \mathbb{R}^n for *n*-dimensional Euclidean space, and ||x|| for the Euclidean norm of a vector $x \in \mathbb{R}^n$ (distance from x to 0). You must do eight of the following problems. Please indicate which of the nine problems should not be graded.

- 1. Let $f:(0,\infty)\to \mathbf{R}$ be a bounded continuous function. Show that there exists $c\in(0,\infty)$ such that $\int_0^\infty e^{-x}f(x)\,dx=f(c)$.
- 2. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a continuous function such that ||f(x)|| < ||x|| for every point $x \neq 0$. Fix a point $x_1 \in \mathbb{R}^n$, and define recursively $x_{n+1} = f(x_n)$ for $n \geq 1$. Show that the sequence $(x_n)_{n=1}^{\infty}$ converges to 0.
- 3. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a mapping of class C^1 such that the Jacobian determinant $J_f(x)$ is different from zero for all points x. Assume in addition that $\{x: ||f(x)|| < M\}$ is a bounded set for every M > 0. Show that f is onto. That is, show that for every $y \in \mathbb{R}^n$ there exists at least one point $x \in \mathbb{R}^n$ such that f(x) = y.
- 4. Consider the surface S surface in \mathbb{R}^3 consisting of all points of coordinates (x, y, z) such that $x^2 + y^2 + z^2 = 1$ and $x \geq \frac{1}{2}$, and choose an orientation for S. Calculate the integral $\int_S \omega$, where the 2-form ω is defined by

$$\omega(x, y, z) = xdx \wedge dy + ydy \wedge dz + zdz \wedge dx$$

for $(x, y, z) \in \mathbf{R}^3$.

5. Denote by $D = \{(x, y) : x > 0\}$ the right half-plane in \mathbb{R}^2 , and let f be a function of class C^1 defined on D. Assume that

$$rac{\partial f}{\partial x}(x,y) \leq rac{1}{\sqrt{x}} \quad ext{and} \quad rac{\partial f}{\partial y}(x,y) \leq 1$$

for all $(x, y) \in D$. Show that f is uniformly continuous on D.

6. Assume that the function $f: \mathbb{R} \to \mathbb{R}$ is differentiable at every point, and $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ are two sequences converging to zero with $a_n < b_n$ for all n. Do the quotients

$$\frac{f(b_n)-f(a_n)}{b_n-a_n}$$

necessarily converge to f'(0)? (Prove if yes, give a counterexample if no.)

- 7. Let $f:[0,1]\times[0,1]\to\mathbf{R}$ be a continuous function, and define $g:[0,1]\to\mathbf{R}$ by $g(x)=\max_{y\in[0,1]}f(x,y)$. Show that g is continuous.
- 8. Let $(a_n)_{n=1}^{\infty}$ be a sequence of real numbers, and define $s_n = \sum_{k=1}^n a_k$. Assume that $\lim_{n\to\infty} \sqrt{n}a_n = 1$ and prove that $\lim_{n\to\infty} s_n/\sqrt{n} = 2$.
- 9. Consider a complete metric space (X,d), and a sequence $F_1 \supseteq F_2 \supseteq \cdots$ of nonempty, closed subsets of X. Assume that for each n, the set F_n can be covered by a finite number of balls of radius 1/n. For each n, select a point $x_n \in F_n$. Prove that the sequence $(x_n)_{n=1}^{\infty}$ has a convergent subsequence.