Tier 1 Analysis Examination

January 1999

1. Prove that the function

$$f(x) = \begin{cases} x + 2x^2 \sin(1/x) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

satisfies f'(0) > 0, but that there is no open interval containing 0 on which f is increasing.

2. Let $F: \mathbf{R}^2 \to \mathbf{R}^2$ be a mapping defined by F(x,y) = (u,v) where

$$u = u(x, y) = x \cos(y)$$
$$v = v(x, y) = y \cos(x).$$

Note that $F(-\pi/3, \pi/3) = (-\pi/6, \pi/6)$.

- (i) Show that there exist neighborhoods U of $(-\pi/3, \pi/3)$, V of $(-\pi/6, \pi/6)$, and a differentiable function $G: V \to U$ such that F restricted to U is one-to-one, F(U) = V and G(F(x,y)) = (x,y) for every $(x,y) \in U$.
- (ii) Let U, V and G be as in part (i), and write

$$G(u, v) = (x, y)$$
, with $x = x(u, v), y = y(u, v)$.

Find

$$\frac{\partial x}{\partial u}(-\pi/6, \pi/6)$$
 and $\frac{\partial y}{\partial v}(-\pi/6, \pi/6)$.

- 3. Beginning with $a_1 \ge 2$, define a sequence recursively by $a_{n+1} = \sqrt{2 + a_n}$. Show that the sequence is monotone and compute its limit.
- 4. Let $f: K \to \mathbf{R}^n$ be a one-to-one continuous mapping, where $K \subset \mathbf{R}^n$ is a compact set. Thus, the mapping f^{-1} is defined on f(K). Prove that f^{-1} is continuous.
- 5. Let S denote the 2-dimensional surface in \mathbf{R}^3 defined by $F:D\to\mathbf{R}^3$ where $D=\{(x,y):x^2+y^2\leq 4\}$ and $F(x,y)=(x,y,6-(x^2+y^2))$. Let ω be the differential 1-form in \mathbf{R}^3 defined by $\omega=yz^2\,dx+xz\,dy+x^2y^2\,dz$. After choosing an orientation of S, evaluate the integral

$$\int_{S} z \, dx \wedge dy + d\omega.$$

6. Let $f: U \to \mathbf{R}^1$ where $U := (0,1) \times (0,1)$. Thus, f = f(x,y) is a function of two variables. Assume for each fixed $x \in (0,1)$, that $f(x,\cdot)$ is a continuous function of y. Let \mathcal{F} denote the countable family of functions $f(\cdot,r)$ where $r \in (0,1)$ is a rational number. Thus, for each rational number $r \in (0,1)$, $f(\cdot,r)$ is a function of x. Assume that the family \mathcal{F} is equicontinuous. Now prove that f is a continuous function of x and y; that is, prove that $f: U \to \mathbf{R}^1$ is a continuous function.

- 7. Let $f_1 \geq f_2 \geq f_3 \geq \ldots$ be a sequence of real-valued continuous functions defined on the closed unit ball $B \subset \mathbf{R}^n$ such that $\lim_{k \to \infty} f_k(x) = 0$ for each $x \in B$. Prove that $f_k \to 0$ uniformly on B. This is a special case of Dini's theorem. You may not appeal to Dini's theorem to answer the problem.
- 8. Let $f: \mathbf{R}^1 \to \mathbf{R}^1$ be a nonnegative function satisfying the Lipschitz condition $|f(x_1) f(x_2)| \le K|x_1 x_2|$ for all $x_1, x_2 \in \mathbf{R}^1$ and where K > 0. Suppose that

$$\int_0^\infty f(x) \ dx < \infty.$$

Prove that

$$\lim_{x \to \infty} f(x) = 0.$$

9. Let F be a nonnegative, continuous real-valued function defined on the infinite strip $\{(x,y): 0 \le x \le 1, y \in \mathbf{R}^1\}$ with the property that $F(x,y) \le 4$ for all $(x,y) \in [0,1] \times [0,2]$. Let f_n be a continuous piecewise-linear function from [0,1] to \mathbf{R}^1 such that $f_n(0) = 0$, f_n is linear on each interval of the form $\left[\frac{i}{n}, \frac{i+1}{n}\right]$, $i = 0, 1, \ldots, n-1$, and for $x \in \left(\frac{i}{n}, \frac{i+1}{n}\right)$, $f'_n(x) = F\left(\frac{i}{n}, f_n\left(\frac{i}{n}\right)\right)$. Prove that there is a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ such that f_{n_k} converges uniformly to a function f on [0, 1/2].