Tier 1 Analysis Examination

August 1998

1. Consider the sequence of functions $f_k(x) := \{\sin(kx)\}, k = 1, 2, ...,$ and observe that $\sin(kx) = 0$ if $x = m\pi/k$ for all integers m. Given an arbitrary interval [a, b], show that $\{f_k\}$ has no subsequence that converges uniformly on [a, b].

2.

- (a) Given a sequence of functions f_k defined on [0,1], define what it means for $\{f_k\}$ to be equicontinuous.
- (b) Let G(x, y) be a continuous function on \mathbf{R}^2 and suppose for each positive integer k, that g_k is a continuous function defined on [0, 1] with the property that $|g_k(y)| \leq 1$ for all $y \in [0, 1]$. Now define

$$f_k(x) := \int_0^1 g_k(y) G(x, y) \ dy.$$

Prove that the sequence $\{f_k\}$ is equicontinuous on [0,1].

- 3. Let $\Omega \subset \mathbf{R}^n$ be an open connected set and let $\Omega \xrightarrow{f} \Omega$ be a C^1 transformation with the property that determinant of its Jacobian matrix, |Jf|, never vanishes. That is, $|Jf(x)| \neq 0$ for each $x \in \Omega$. Assume also that $f^{-1}(K)$ is compact whenever $K \subset \Omega$ is a compact set. Prove that $f(\Omega) = \Omega$.
- 4. Let G(x,y) be a continuous function defined on \mathbb{R}^2 . Consider the function f defined for each t>0 by

$$f(t) := \int \int_{x^2 + y^2 < t^2} \frac{G(x, y)}{\sqrt{t^2 - x^2 - y^2}} dx dy.$$

Prove that

$$\lim_{t \to 0^+} f(t) = 0.$$

- 5. Let (X, \mathbf{d}) be a compact metric space and let \mathcal{G} be an arbitrary family of open sets in X. Prove that there is a number $\lambda > 0$ with the property that if $x, y \in X$ are points with $\mathbf{d}(x, y) < \lambda$, then there exists an open set $U \in \mathcal{G}$ such that both x and y belong to U.
- 6. Let $\Gamma:=\{(x,y,z)\in\mathbf{R}^3:e^{xy}=x,x^2+y^2+z^2=10\}$. The Implicit Function theorem ensures that Γ is a curve in some neighborhood of the point $p=(e,\frac{1}{e},\sqrt{10-e^2-\frac{1}{e^2}})$. That is, there is open interval $I\subset\mathbf{R}^1$ and a C^1 mapping $I\stackrel{\gamma}{\longrightarrow}\Gamma$ such that $\gamma(0)=p$. Find a unit vector v such that $v=\pm\frac{\gamma'(0)}{|\gamma'(0)|}$.
- 7. Suppose that a hill is described as $\{(x,y,z) \in \mathbf{R}^3 : (x,y,f(x,y))\}$ where $f(x,y) = x^3 + x 4xy 2y^2$. Suppose that a climber is located at p = (1,2,-14) on the hill and wants to move from p to another location on the hill without changing elevation. In which direction should the climber proceed from p? Express your answer in terms of a vector and completely justify your answer.

8. Suppose g and f_k (k = 1, 2, ...) are defined on $(0, \infty)$, are Riemann integrable on [t, T] whenever $0 < t < T < \infty$, $|f_k| \le g$, $f_k \to f$ uniformly on every compact subset of $(0, \infty)$, and

$$\int_0^\infty g(x) \ dx < \infty.$$

Prove that

$$\lim_{k \to \infty} \int_0^\infty f_k(x) \ dx = \int_0^\infty f(x) \ dx.$$