ANALYSIS EXAMINATION

January, 1998

Instructions: Answer all seven questions. Each of the seven questions is equally weighted. Notation: R denotes the set of all real numbers.

1. State whether each of the following limit exists, and prove your assertions.

(a)
$$\lim_{(x,y)\to(0,0)} \frac{x^2y^3}{x^4+y^4}$$
 (b) $\lim_{(x,y)\to(0,0)} \frac{x^2y^3}{x^4+y^6}$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{x^2y^3}{x^4+v^6}$$

2. Suppose $f: \mathbb{R} \to \mathbb{R}$ is a uniformly continuous function on \mathbb{R} . If

$$f_k(x) = k \int_x^{x+(1/k)} f(t) dt$$
 for $x \in \mathbb{R}$ and $k = 1, 2, 3, ...,$

prove that the sequence $\{f_k\}$ converges to f uniformly on R.

- 3. Compute the surface integral $\iint_S (x^2 + y^2) dA$, where S is the boundary of the set $\{(x, y, z) \in \mathbb{R}^3 : \sqrt{x^2 + y^2} \le z \le 1\}$, and dA denotes the surface area element.
- 4. Let $\pi_1: \mathbb{R}^2 \to \mathbb{R}$ and $\pi_2: \mathbb{R}^2 \to \mathbb{R}$ be the projection maps

$$\pi_1(x,y)=x, \quad \pi_2(x,y)=y, \quad \text{for } (x,y)\in \mathbf{R}^2,$$

and let S be the horizontal strip $S = \{(x,y) \in \mathbb{R}^2 : -1 \le y \le 1\}$. State whether each of the following assertions is TRUE or FALSE, and prove your assertions.

- (a) If E is a closed subset of \mathbb{R}^2 such that $E \subset S$, then the image $\pi_1(E)$ must be a closed subset of R.
- (b) If E is a closed subset of \mathbb{R}^2 such that $E \subset S$, then the image $\pi_2(E)$ must be a closed subset of R.
- 5. If f is a continuous function on [0,1], prove that

$$\lim_{t \downarrow 1} \left[(1-t) \sum_{k=0}^{\infty} t^k f(t^k) \right] = \int_0^1 f(x) \, dx.$$

6. Let Ω be a bounded, connected open set in \mathbb{R}^n , and let f be a continuous real-valued function on the closure of Ω . Suppose that f is of class C^{∞} on the set Ω , and suppose that for each point $p \in \Omega$ there is at least one index $i \in \{1, 2, ..., n\}$ such that

$$\frac{\partial^2 f}{\partial x_i^2}(p) < 0.$$

If

$$f(p) \ge 0$$
 for every point p in the boundary of Ω ,

prove that

$$f(p) \ge 0$$
 for every point p in Ω .

7. Let Ω be a convex open set in \mathbb{R}^2 . Let $f:\Omega\to\mathbb{R}$ and $g:\Omega\to\mathbb{R}$ be functions of class C^∞ , and assume that for each point $p \in \Omega$ we have

$$\frac{\partial f}{\partial x}(p) \ge 5, \qquad \frac{\partial g}{\partial y}(p) \ge 5, \qquad \left|\frac{\partial f}{\partial y}(p)\right| \le 1, \qquad \left|\frac{\partial g}{\partial x}(p)\right| \le 1.$$

Define $T:\Omega\to \mathbf{R}^2$ by T(p)=(f(p),g(p)) for each point $p\in\Omega$. Prove that the image $T(\Omega)$ is an open subset of \mathbf{R}^2 , and that T is a one-to-one mapping from Ω onto $T(\Omega)$.