Department of Mathematics-Indiana University

Analysis Qualifying Exam

August, 1996

You should attempt all nine of the following problems. Good luck!

1. Let X be the metric space

$$X = \{(x, y) \in \mathbb{R}^2 : y \ge |x|^{2/3}\}$$

with the usual Euclidean distance, and define $f: X \to \mathbb{R}$ by $f(x,y) = \frac{xy^3}{x^4 + y^4}$ for $(x,y) \neq (0,0)$, and f(0,0) = 0. Decide whether or not f is continuous at (0,0), and prove your answer by applying the $\varepsilon - \delta$ definition of continuity. Is f continuous at (0,0) when considered as a mapping from \mathbb{R}^2 into \mathbb{R}^2 . Prove your answer.

- 2. Define $g: [-1,1] \to \mathbb{R}$ by $g(x) = (-1)^k/k^2$ for $|x| \in (1/(k+1),1/k]$, $k=1,2,\ldots$, and g(0)=0. Decide whether or not g is differentiable at 0, and prove your answer.
- 3. Let $\{a_n\}_{n=0}^{\infty}$ be the Fibonacci sequence $\{1,1,2,3,5,8,\ldots\}$. (Thus $a_{n+1}=a_n+a_{n-1}$ for $n\geq 1$.) Show that the series $\sum_{n=0}^{\infty}\frac{1}{a_n}$ converges.
- 4. Compute $\int_{\Phi} \operatorname{curl} F \cdot N dA$, where F is the vector field $F(x,y,z) = \frac{(-z,y,x)}{\sqrt{x^2 + z^2 + 1}}$, $\Phi : [0,1] \times [0,2\pi] \to \mathbb{R}^3$ is the surface $\Phi(r,\theta) = (r\cos\theta, r^2, r\sin\theta)$, N is a unit normal vector on Φ , and dA is the surface area element.
- 5. Let E be an open set in \mathbb{R}^n , and let $F: E \to \mathbb{R}^n$ be C^1 . Show that, if the function $|F|^2$ has a nonzero relative minimum at a point $x_0 \in E$, then the linear transformation $F'(x_0)$ must be singular.
- 6. Let $f:[0,\infty)\to\mathbb{R}$ be continuous, and assume that $\lim_{x\to\infty}f(x)$ exists and is a finite number L. What can be said about

$$\lim_{n\to\infty}\int_0^1 f(nx)\,dx ?$$

Prove your answer.

- 7. Let A be the set of real numbers in [0, 1] whose decimal expansions contain only the digits 3 and 8. Is A countable? Is A dense in [0, 1]? Is A closed? Prove your answers.
- 8. Let $E \subset \mathbb{R}^2$ be open and nonempty. Prove that there is no one-to-one, C^1 function mapping E into R.
- 9. Let $E \subset \mathbb{R}^2$ be open, and let $F: E \to \mathbb{R}$ have continuous second order derivatives in E. Denote by f'' the matrix of second partial derivatives $\begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix}.$
 - a. Show that the set of points in E at which f'' has repeated eigenvalues is closed relative to E.
 - b. Suppose that f'' is positive definite in E; that is, suppose that, for each $x \in E$ and $h \in \mathbb{R}^2 \{0\}$, $(f''(x)h) \cdot h > 0$. Show that, for any compact subset $K \subset E$, there is a positive constant ε such that

$$(f''(x)h) \cdot h \ge \varepsilon |h|^2$$

for all $x \in K$ and all $h \in \mathbb{R}^2$.