Tier 1 Algebra – January 2020

All problems carry equal weight. All your answers should be justified. A correct answer without a correct proof earns little credit. All questions are worth the same number of points. Write a solution of each problem on a separate page.

1. Let

$$A = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{array} \right].$$

- (i) Find the eigenvectors of A.
- (ii) Find A^{100} .

Remark: When writing down the entries of A^{100} use exponential notation, e.g., $2^{100} + 3^{100}$, or similar.

2. Let A be an $n \times n$ -matrix. Show that

$$\det(A+I) = \sum_{B} \det B,$$

where the sum is over all the principal minors of A.

[The principal minors are the matrices B obtained from A by removing rows $1 \le i_1 < \ldots < i_r \le n$ and columns $i_1 < \ldots < i_r$ indexed by the same numbers, where r runs through $\{0, \ldots, n\}$, and the determinant of the "empty matrix" is 1.]

- 3. Let $\phi : \mathbb{C}^7 \to \mathbb{C}^7$ be a be a \mathbb{C} -linear endomorphism with dim $\left(\ker(\phi^3)\right) = 5$ and $\phi^7 = 0$. What are the possible Jordan canonical forms of ϕ ?
- 4. Let V be a finite-dimensional vector space over a field k, and let $U \subsetneq V$ be a proper subspace. Suppose $\phi: V \to V$ is an endomorphism of V which has the following properties:
 - $\phi|_U = 0$, i.e., $U \subset \ker(\phi)$;
 - the induced map $\overline{\phi}: V/U \to V/U$, defined by $\overline{\phi}(v+U) := \phi(v) + U$, is the zero map.
 - (i) Show that $\phi^2 = \phi \circ \phi$ is the zero map.
 - (ii) Is ϕ necessarily zero too? If so, give a proof, if not, give a counterexample.

5. Let G be a subgroup of S_6 , the symmetric group on 6 elements. Suppose G contains a 6-cycle. Prove that G has a normal subgroup H of index 2.

[Hint: You may use the sign homomorphism.]

- 6. (i) Let G be a finite group. Show that the size (i.e., cardinality) of every conjugacy class in G divides the order of G.
 - (ii) Use (i) to determine all finite groups G such that G has exactly two conjugacy classes.
- 7. Determine if the following assertions are true or false. Justify why or give a counterexample.
 - (i) Every subgroup of index 3 in a group is normal.
 - (ii) Every group is isomorphic to a subgroup of a symmetric group.
 - (iii) If a homomorphism $\phi: G \to H$ is onto then there is a subgroup K of G with $H \cong K$.
 - (iv) $\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z} \cong \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/9\mathbb{Z}$.
- 8. Show that the group R^* of invertible elements in the ring $R = \mathbb{Z}/105\mathbb{Z}$, is isomorphic to $\mathbb{Z}/12\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

[Recall that an element x of a commutative ring R is called *invertible*, if there is an element y such that $xy = 1_R$.]

- 9. Let $\omega = e^{2\pi i/5}$ be a 5th root of unity. The field $L = \mathbb{Q}(\omega)$ contains $K = \mathbb{Q}(\sqrt{5})$ because $\omega + \omega^{-1} = \frac{-1+\sqrt{5}}{2}$.
 - (i) Find the minimal polynomial for ω over \mathbb{Q} . (Argue from first principles. Do not use "well-known" facts about cyclotomic polynomials.)
 - (ii) Find the minimal polynomial for ω over $\mathbb{Q}(\sqrt{5})$.
- 10. Let P be a prime ideal in a commutative ring R with 1. Let

$$f(x) = x^n + a_1 x^{n-1} + \ldots + a_{n-1} x + a_n \in R[x]$$

be a non-constant monic polynomial with coefficients in R. Suppose that all coefficients a_1, \ldots, a_n are in P, and that f(x) = g(x)h(x), for some non-constant monic polynomials $g(x), h(x) \in R[x]$. Then show that the constant term of f(x) is in P^2 , the ideal generated by all elements of the form ab, where $a, b \in P$.