Algebra Tier 1

January 2022

All your answers should be explained and justified. A correct answer without a correct proof earns little credit. Each problem is worth 10 points. Write a solution of each problem on a separate page.

 \mathbf{Q} , \mathbf{R} , and \mathbf{C} denotes the field of rational numbers, the field of real numbers, and the field of complex numbers respectively.

Problem 1. Find the Jordan canonical form of the complex matrix

$$A = \left[\begin{array}{ccccc} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{array} \right]$$

Problem 2. Let A and B be $n \times n$ complex matrices such that AB = BA. Prove that A and B have a common eigenvector: there exists $0 \neq X \in \mathbb{C}^n$ such that

$$AX = \lambda X$$
 and $BX = \mu X$

for some $\lambda, \mu \in \mathbf{C}$.

Problem 3. Let \mathbf{F}_7 be the field with 7 elements, and consider the special linear group

$$SL_3(\mathbf{F}_7) = \{ A \in M_{3 \times 3}(\mathbf{F}_7) \mid \det A = 1 \}.$$

What is its order $|SL_3(\mathbf{F}_7)|$?

Problem 4. Give an example of 3 pairwise nonisomorphic groups of order 24.

Problem 5. Give an example of a group G that contains a conjugacy class with 5 elements.

Problem 6. Let G and H be finite groups of orders |G| = 34, |H| = 100. Prove that there exists a homomorphism

$$\phi: G \to H$$

such that $\ker(\phi) \neq G$.

Problem 7. Let \mathbf{F}_{11} be the field with 11 elements. Consider the quotient rings $A = \mathbf{F}_{11}[x]/(x^2-2)$ and $B = \mathbf{F}_{11}[x]/(x^2-5)$. Is there a ring homomorphism $\phi: A \to B$? Is there a ring homomorphism $B \to A$?

Problem 8. Give an example of two distinct polynomials $p(x) = x^2 + ax + b$ and $q(x) = x^2 + cx + d$ in $\mathbf{Q}[x]$ such that p(x) and q(x) are irreducible, and the quotient fields $\mathbf{Q}[x]/(p(x))$ and $\mathbf{Q}[x]/(q(x))$ are isomorphic.

Problem 9. Consider the polynomial ring C[x,y] with the ideal $I=(x^2+y^2,x^2-y^2-1)$. Prove that the quotient ring C[x,y]/I is not a field.

Problem 10. Prove that the quotient ring $K = \mathbf{Q}[x]/(x^8 - 5)$ is a field. Then show that the polynomial $t^3 - 7$ is irreducible in the polynomial ring K[t].

1