Algebra Tier I exam – January 2021

Work all problems. They all count equally. Show computations and justify your answers; a correct answer without a correct proof earns little credit. Begin the solution of each problem on a separate page. You have 4 hours.

- 1. Let I be an ideal in a commutative ring R. Set
 - $J = \{x \in R : \text{ there exists } n > 0 \text{ so that } x^n \in I\}.$
- (a) Show that J is an ideal in R and $J \supset I$.
- (b) What is J if I is a prime ideal? Prove your answer.
- 2. Let R be a commutative ring and let S be the ring that is $R \oplus R \oplus R$ as an abelian group with multiplication

$$(r_1, r_2, r_3) \cdot (r_4, r_5, r_6) := (r_1r_4, r_1r_5 + r_2r_4, r_1r_6 + r_3r_4).$$

(You may assume without proof that S is indeed a ring.)

- (a) What is the unit in the ring S?
- (b) Which elements $(r_1, r_2, r_3) \in S$ are invertible?
- (c) For any invertible element $(r_1, r_2, r_3) \in S$, give a formula for its inverse.
- 3. A ring is simple if every 2-sided ideal in this ring is either zero or the whole ring. Prove that for all $n \ge 1$, the ring of $(n \times n)$ -matrices over a field F is simple.
- 4. Let F be a finite field of characteristic p. Let q be the number of elements of F. Prove that:
 - (a) the minimal subfield of F is isomorphic to $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$;
 - (b) $q = p^n$ for some integer $n \ge 1$;
 - (c) $a^q = a$ for all $a \in F$.
- 5. Prove that the quotient group G/Z of a non-abelian group G by its center Z=Z(G) cannot be a cyclic group.
- 6. Find the order of the group $\operatorname{Aut}(\operatorname{Aut}(\operatorname{Aut}(\mathbb{Z}_9)))$, where $\mathbb{Z}_9 = \mathbb{Z}/9\mathbb{Z}$ and $\operatorname{Aut}(G)$ is the group of automorphisms of the group G.
- 7. Let p be a prime number and let $G = GL_2(\mathbb{Z}_p)$ be the group of invertible 2-by-2 matrices with entries in $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$.
 - (a) Find subgroups of G of order p-1, p, $(p-1)^2$, and p(p-1).
 - (b) Show that G has no subgroups of order p^2 .

- 8. Let V be a finite-dimensional vector space, and let U_1, U_2, U_3 be subspaces of V.
- (a) Prove that

$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2).$$

(b) Prove that

$$\dim(U_1 + U_2 + U_3) \le \dim U_1 + \dim U_2 + \dim U_3 - \dim(U_1 \cap U_2) - \dim(U_1 \cap U_3) - \dim(U_2 \cap U_3) + \dim(U_1 \cap U_2 \cap U_3).$$

- (c) Give an example of V, U_1, U_2, U_3 such that the inequality in (b) is not an equality.
- 9. Consider the $n \times n$ matrix over \mathbb{R} :

$$\begin{pmatrix} 1 & -1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & -1 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & & & & & & \\ 0 & 0 & 0 & \cdots & 1 & -1 \\ -1 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}.$$

- (a) Calculate its characteristic polynomial.
- (b) Find an eigenvalue of this matrix, and a corresponding eigenvector.
- (c) What is the multiplicity of your eigenvalue?
- (d) Is this matrix invertible? Why?
- 10. Let A be an $m \times n$ matrix, and let B be an $n \times m$ matrix over a field.
- (a) If $A \cdot B = I_m$, then what is rank $(B \cdot A)$? Prove your answer.
- (b) Suppose that $A \cdot B = I_m$. Give a necessary and sufficient condition on n, m for $B \cdot A = I_n$.
- (c) Give an example of m, n, A, B such that

$$rank(A \cdot B) < rank(A) = rank(B) = m \le n.$$