Algebra Tier 1

January 2019

All your answers should be explained and justified. A correct answer without a correct proof earns little credit. Each problem is worth 10 points. Write a solution of each problem on a separate page.

 \mathbf{Q} , \mathbf{R} , and \mathbf{C} denotes the field of rational numbers, the field of real numbers, and the field of complex numbers respectively.

Problem 1. Find the Jordan canonical form of the complex matrix

$$A = \left[\begin{array}{cccc} 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{array} \right]$$

Problem 2. Let A be a complex square matrix such that $A^n = I$ for some $n \ge 1$. Prove that A is diagonalizable

Problem 3. A 5×5 complex matrix A has eigenvalues 1 and 0. If the rank $rk(A^2) = 1$ find all possible Jordan canonical forms of A.

Problem 4. Prove that a group of order 35 is cyclic.

Problem 5. Find the order of the automorphism group of the abelian group $G = C_3 \oplus C_3 \oplus C_3$, where C_3 is a cyclic group of order 3.

Problem 6. Describe the conjugacy classes in the dihedral group D_6 . (D_6 has 12 elements.)

Problem 7. Prove that the polynomial ring $\mathbf{Q}[x,y]$ contains an ideal I which can be generated by 3 elements, but not by 2 elements.

Problem 8. Give an example of a polynomial $p(x) \in \mathbf{R}[x]$ such that the quotient ring $\mathbf{R}[x]/(p(x))$ is not a product of fields.

Problem 9. Determine which of the following ideals are prime ideals or maximal (or neither) in the polynomial ring C[x, y]:

$$I_1 = (x), I_2 = (x, y^2), I_3 = (x - y, x + y), I_4 = (x - y, x^2 - y^2)$$

Problem 10. Prove that the quotient ring $K = \mathbf{Q}[x]/(x^7 - 5)$ is a field. Then show that the polynomial $t^3 - 2$ is irreducible in the polynomial ring K[t].

1