Tier I Algebra Exam

January, 2013

- Be sure to fully justify all answers.
- Notation The sets of integers, rational numbers, real numbers, and complex numbers are denoted \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} , respectively. All rings are understood to have a unit and ring homomorphisms to be unit preserving.
- Scoring Each problem is worth 10 points.
- Please write on only one side of each sheet of paper. Begin each problem on a new sheet, and be sure to write a problem number and your test number on each sheet of paper.
- 1. Give examples with brief justification:
 - (a) A commutative ring with exactly one non-zero prime ideal.
 - (b) A commutative ring with a non-zero prime ideal that is not maximal.
 - (c) A UFD that is not a PID.
 - (d) A 2×2 integer matrix having $1 + \sqrt{2}$ as an eigenvalue.
 - (e) A polynomial of degree 4 with integer coefficients that is irreducible over the rational numbers but not irreducible when reduced mod 3, mod 5, and mod 7.
- 2. Let R be a commutative ring with unit and let P < R be a prime ideal. Show that if R/P is a finite set, then P is a maximal ideal.
- 3. Find the degree of the field $\mathbb{Q}(\sqrt[4]{2})$ as an extension of the field $\mathbb{Q}(\sqrt{2})$.
- 4. Let \mathbb{F} be a field with 8 elements and \mathbb{E} a field with 32 elements. Construct a (unit preserving) homomorphism of rings $\mathbb{F} \to \mathbb{E}$ or prove that one cannot exist.
- 5. In \mathbb{R}^5 , consider the subspaces $V = \langle (1,2,3,3,2), (0,1,0,1,1) \rangle \quad \text{and} \quad W = \langle (0,-1,3,2,-1), (1,1,0,-1,1) \rangle,$ where $\langle \rangle$ indicates span. Find a basis for $V \cap W$.
- 6. Compute $\begin{pmatrix} 3 & 1 \\ -2 & 0 \end{pmatrix}^{100}$.

Test continues on other side.

7. Consider the matrix

For which $n \in \mathbb{Z}$ does there exist a matrix P (with entries in \mathbb{C}) such that $P^n = M$?

- 8. Suppose that ϕ is a homomorphism from $\mathbb{Z}/7\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z}$ to itself satisfying $\phi^5 = \mathrm{id}$ (where $\phi^5 = \phi \circ \phi \circ \phi \circ \phi \circ \phi$). Show that ϕ is the identity.
- 9. Consider the quotient of additive abelian groups $G = \mathbb{Q}/\mathbb{Z}$. Prove that every finite subgroup of G is cyclic.
- 10. Consider the order 2 subgroup $H = \{(1), (1\ 2)(3\ 4)\}$ of the symmetric group S_4 .
 - (a) What is the normalizer N(H)?
 - (b) What numbers occur as orders of non-identity elements of the quotient group N(H)/H?
- 11. Classify up to isomorphism all groups with 38 elements: Give a list of non-isomorphic groups with 38 elements such that every group with 38 elements is isomorphic to one in your list. Be sure to justify that your list consists of non-isomorphic groups and that you have identified all groups with 38 elements up to isomorphism.
- 12. For an abelian group A and a positive integer n, consider the automorphism of A given by multiplication by n. Denote by ${}_{n}A$ and A/n its kernel and cokernel (quotient), respectively. Let $\phi \colon A \to B$ be a homomorphism of finite abelian groups, and assume that for all prime numbers p, ϕ induces an isomorphism ${}_{p}A \to {}_{p}B$ and an isomorphism $A/p \to B/p$. Show that ϕ is an isomorphism.