ALGEBRA TIER I August, 2012

All answers must be justified. A correct answer without justification will receive little credit. Each problem is worth 10 points.

(1) Let $f: \mathbb{Z}^3 \to \mathbb{Z}^4$ be the function

$$f(a,b,c) = (a+b+c, a+3b+c, a+b+5c, 4a+8b)$$

- (a) Prove that f is a group homomorphism.
- (b) Let H denote the image of f. Find an element of infinite order in \mathbb{Z}^4/H .
- (c) Calculate the order of the torsion subgroup of \mathbb{Z}^4/H .
- (2) Let A be the matrix

$$A = \begin{pmatrix} 1 & \sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}$$

Calculate $[K:\mathbb{Q}]$ where K is the smallest subfield of \mathbb{C} containing \mathbb{Q} and the eigenvalues of A.

(3) Let $R = \mathbb{Z}[x]/I$, where I is the ideal generated by $x^2 - 5x - 2$. Let S denote the ring of 2×2 integer matrices: $S = M_2(\mathbb{Z})$. Let B denote the matrix

$$B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

- (a) Show that there exists a unique ring homomorphism $f: R \to S$ satisfying f(x+I) = B.
- (b) Let J denote the ideal in R generated by the element (x-1)+I. Is f(J) an ideal in S? Why or why not?
- (4) Does there exist a non-abelian group of order 2012?
- (5) Let $n \in \{2, 3, 7\}$ and consider the ring

$$R_n = (\mathbb{Z}/n)[x]/(x^3 + x^2 + x + 2).$$

For which $n \in \{2, 3, 7\}$ (if any) is R_n a field? For which n (if any) is R_n a integral domain but not a field? For which n (if any) is R_n not an integral domain? Justify all your conclusions.

- (6) Let R be the subring of \mathbb{R} given by $R = \{n + m\sqrt{-10} \mid m, n \in \mathbb{Z}\}$. Show that the element $2 \sqrt{-10}$ is irreducible in R but not prime.
- (7) Let G be a finite abelian group and let $\phi: G \to G$ be a group homomorphism. Note that for all positive integers k the function $\phi^k = \underbrace{\phi \circ \phi \circ \cdots \circ \phi}_{k \text{ times}}$ is also a homomorphism from G to G. Prove

there is a positive integer n such that $G \cong ker(\phi^n) \times \phi^n(G)$.

- (8) Let G be a group containing normal subgroups of order 3 and 5. Prove G contains an element of order 15.
- (9) Let M be the following matrix:

$$\begin{pmatrix}
1 & -1 & 2 \\
2 & -1 & 1 \\
-4 & 1 & 0 \\
3 & -2 & 3
\end{pmatrix}$$

Prove or disprove (by giving a counterexample) each of the following statements:

- (a) For every 3×4 complex matrix N there is a nonzero vector $v \in \mathbb{C}^4$ such that MNv = 0.
- (b) For every 3×4 complex matrix N there is a nonzero vector $v \in \mathbb{C}^3$ such that NMv = 0.
- (10) Suppose that K/F is a finite extension of fields and p is the smallest prime dividing [K:F]. Prove that for all $\alpha \in K$, $F(\alpha) = F(\alpha^{p-1})$.