Algebra Tier 1

January 2012

All your answers should be justified. A correct answer without a correct proof earns little credit. All questions are worth the same number of points. Write a solution of each problem on a separate page. The notation \mathbf{F}_n , \mathbf{R} , \mathbf{Z} stands for the field with n elements, the field of real numbers, and the ring of integers respectively.

Problem 1. Find the Jordan canonical form of the complex matrix

$$A = \left[\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right]$$

Problem 2. Find the matrix A^{2011} , where A is the matrix from problem 1 above.

Problem 3. Find the eigenvalues and a basis for the eigenspaces of the matrix

Problem 4. Find the matrix $e^{C} := I + C + \frac{C^{2}}{2!} + \frac{C^{3}}{3!} + ..., where$

$$C = \left[\begin{array}{cc} 1 & 4 \\ 1 & 1 \end{array} \right]$$

Problem 5. Let a and b be elements of a group G. Prove that ab and ba have the same order.

Problem 6. Prove that if G is a nonabelian group, then G/Z(G) is not cyclic. Here Z(G) denotes the center of G.

Problem 7. Prove that if G is a finite nonabelian group of order p^3 , where p is a prime, then Z(G) = [G, G], where Z(G) denotes the center of G and [G, G] denotes the commutator subgroup of G.

Problem 8. Let C_2 denote a cyclic group of order 2. Determine the group $Aut(C_2 \times C_2)$, calculating its order and identifying it with a familiar group.

Problem 9. Find all irreducible polynomials of degree ≤ 4 in $\mathbf{F}_2[x]$.

Problem 10. Find the set of polynomials in $\mathbf{F}_2[x]$ which are the minimal polynomials of elements in \mathbf{F}_{16} .

Problem 11. Prove that the rings \mathbf{F}_{16} , $\mathbf{F}_{4} \times \mathbf{F}_{4}$, and $\mathbf{Z}/16\mathbf{Z}$ are pairwise non-isomorphic.

Problem 12. Find all the maximal ideals in the ring $\mathbf{R}[x]$.

Problem 13. Let R be the ring of Gaussian integers and $I \subset R$ be an ideal. If R/I has 4 elements what are the possibilities for I and R/I?