Tier I Algebra Exam August, 2009

- Be sure to fully justify all answers.
- Notation The sets of integers, rational numbers, and real numbers are denoted \mathbf{Z} , \mathbf{Q} , and \mathbf{R} , respectively. For a prime integer p, \mathbf{Z}/p denotes the quotient $\mathbf{Z}/p\mathbf{Z}$. All rings are understood to have a unit.
- Scoring Each problem is worth 10 points.
- Please write on only one side of each sheet of paper. Begin each problem on a new sheet, and be sure to write a problem number on each sheet of paper.
- (1) Let A and B be finite subgroups of a group G of relatively prime orders; that is, $\gcd(|A|, |B|) = 1$. Prove that the function $\phi : A \times B \to G$ defined by $\phi(a, b) = ab$ is injective.
- (2) Find an element of largest order in the symmetric group S_{12} . Justify your answer.
- (3) (a) Let G and H be abelian groups and let $\operatorname{Hom}(G,H)$ denote the set of all group homomorphisms from G to H. If $\phi, \psi \in \operatorname{Hom}(G,H)$, define $\phi + \psi$ by $(\phi + \psi)(g) = \phi(g) + \psi(g)$ for all $g \in G$. Prove that $\operatorname{Hom}(G,H)$ is an abelian group.
 - (b) Let C be a cyclic group such that $\operatorname{Hom}(C, \mathbf{Z}/p) \cong \mathbf{Z}/p$. What can you say about the order of C?
 - (c) Let G be a finitely generated abelian group and $\text{Hom}(G, \mathbf{Z}/p) \cong (\mathbf{Z}/p)^n$. What does this tell you about G?
- (4) Let A, B be commuting 2×2 real matrices with characteristic polynomials $x^2 3x + 2$ and $x^2 1$, respectively. Show that either A + B or A B has determinant 0.
- (5) Suppose that T is a linear transformation of a finite dimensional real vector space V having characteristic polynomial f(t)g(t) where f and g are relatively prime. Show that $V = \text{Ker}(f(T)) \oplus \text{Ker}(g(T))$.
- (6) Let T be a linear transformation of a finite dimensional real vector space V and assume that V is spanned by eigenvectors of T. If $T(W) \subset W$ for some subspace $W \subset V$, show that W is spanned by eigenvectors. (Hint: consider the minimal polynomial of T.)

- (7) Let F denote the field with two elements and let E be an extension field of F.
 - (a) Show that if $\alpha \in E$ satisfies $f(\alpha) = 0$ for some $f \in F[x]$, then $f(\alpha^2) = 0$.
 - (b) Suppose that $\alpha \in E$ is a root of the polynomial $f(x) = x^5 + x^2 + 1 \in F[x]$. List all roots of f(x) in E in the form $a_0 + a_1\alpha + a_2\alpha^2 + a_3\alpha^3 + a_4\alpha^4$ with each $a_i = 0$ or 1.
- (8) Let $f(x) = x^2 + ax + b$ and $g(x) = x^2 + cx + d$ be irreducible rational polynomials, having roots α and β , respectively. Find necessary and sufficient conditions on the coefficients (a, b, c, d) that imply that $\mathbf{Q}(\alpha)$ is isomorphic to $\mathbf{Q}(\beta)$. Prove that your conditions are both necessary and sufficient.
- (9) (a) Is the ring $\mathbf{Z}[i]$ of Gaussian integers an integral domain? Justify your answer.
 - (b) Let $R = \mathbf{Z}[T]/\langle T^4 1 \rangle$, where $\langle T^4 1 \rangle$ is the ideal generated by $T^4 1$. Is R an integral domain? Justify your answer.
 - (c) Show that sending T to i determines a ring homomorphism $\psi: R \to \mathbf{Z}[i]$. Describe $\operatorname{Ker} \psi$ as all elements $a+bT+cT^2+dT^3 \in R$ where a,b,c,d satisfy some conditions.
- (10) Let F^* denote the multiplicative group of all nonzero elements of a finite field F. Show that F^* is cyclic.