Algebra Tier 1

January 2008

All your answers should be justified. A correct answer without a correct proof earns little credit. All questions are worth the same number of points. Write a solution of each problem on a separate page.

Problem 1. Find eigenvalues and the corresponding eigenvectors of the complex matrix

$$A = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right]$$

Problem 2. Let A be a 5×5 complex matrix such that $A^3 = 0$. List all possible Jordan canonical forms of A.

Problem 3. Find a 5×5 matrix A with rational entries whose minimal polynomial is $(x^3+1)(x+2)^2$.

Problem 4. Let A be a complex $n \times n$ matrix such that $A^m = I$ for some $m \ge 1$. Prove that A is conjugate to a diagonal matrix.

Problem 5. Consider the group \mathbf{R} , +, the additive group of the real numbers.

- a) Show that any homomorphism from a finite group to R. + has to be the trivial homomorphism.
- b) Show that any homomorphism from \mathbf{R} , + to a finite group has to be the trivial homomorphism.

Problem 6. Consider the subgroup H of the group $\mathbb{Z}/12 \times \mathbb{Z}/12$ generated by the element (a^4, a^6) , where a is a generator of $\mathbb{Z}/12$.

- a) What is the order of H? List its elements.
- b) How many elements are there in $(\mathbf{Z}/12 \times \mathbf{Z}/12)/H$?
- c) Write $(\mathbf{Z}/12 \times \mathbf{Z}/12)/H$ as a product of cyclic groups, each of which has order equal to a power of some prime. Find a generator for each of these cyclic subgroups.

Problem 7. Show that in a finite group of odd order every element is a square.

Problem 8. For each of the following subgroups of S_4 (the permutation group on four elements), say what its order is and justify your answer.

- a) The subgroup generated by (1,2) and (3,4).
- b) The subgroup generated by (1,2), (3,4), and (1,3).
- c) The subgroup generated by (1,2), (3,4), and (1,3)(2,4).
- d) The subgroup generated by (1,2) and (1,3).

Problem 9. Let R be an integral domain that contains a field K. Show that if R is a finite dimensional vector space over K, then R is a field.

Problem 10. Let f(x) be a polynomial with coefficients from a finite field F with q elements. Show that if f(x) has no roots in F, then f(x) and $x^q - x$ are relatively prime.

Problem 11. Let α be a root of an irreducible polynomial $x^3 - 2x + 2$ over \mathbf{Q} . Find the multiplicative inverse of $\alpha^2 + \alpha + 1$ in $\mathbf{Q}[\alpha]$ in the form $a + b\alpha + c\alpha^2$ with $a, b, c \in \mathbf{Q}$.

Problem 12. Let f(x) and g(x) be irreducible polynomials over $\mathbf{Q}[x]$. Let α be a root of f(x) and let β be a root of g(x). Show that f(x) is irreducible over $\mathbf{Q}(\beta)$ if and only if g(x) is irreducible over $\mathbf{Q}(\alpha)$.

1