ALGEBRA TIER I January 2006

Unless stated otherwise, all your answers require justification. A correct answer without a correct proof earns little credit. All questions are worth the same number of points.

1. Find the eigenvalues of the complex matrix

$$A = \left[\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right]$$

2. Consider the complex matrices

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

a) Find characteristic polynomials of A and B.

b) Does there exist an invertible matrix P such that $PAP^{-1} = B$?

3. Consider the complex matrices

$$C = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

a) Find the ranks of C and D.

b) Does there exist an invertible matrix P such that $PCP^{-1} = D$?

4. Let A be a $n \times n$ complex matrix such that A^2 is the identity matrix. Prove that there exists an invertible $n \times n$ matrix Q such that the matrix QAQ^{-1} is diagonal.

5. Let A be an invertible matrix, and let E be an upper triangular matrix with zeroes on the diagonal, that is: the (i,j)'th entry of E is 0 for all $j \leq i$. Assume that AE = EA. Show that the matrix A + E is invertible.

1

- 6. Give an example or compute, without proof, each of the following:
 - a) All the abelian groups, up to isomorphism, of order 144 (list them).
 - b) An infinite group all of whose elements have finite order.
- c) Groups $H \triangleleft K \triangleleft G$ (H is normal in K and K is normal in G) such that H is not normal in G .
- 7. Let G be a group, and let H and K be normal subgroups with $H \cap K = \{e\}$. If $h \in H$ and $k \in K$ then show that hk = kh.
- 8. Prove that the center of the finite symmetric group S_n is $\{e\}$ for $n \geq 3$. (Recall that the center is the set of elements which commute with every element of the group.)
- 9. How many conjugacy classes are there in the symmetric group S_5 ?
- 10. Show that if G has trivial center, then G is isomorphic to a subgroup of the group of automorphisms of G. (An automorphism of G is an isomorphism $\phi:G\to G$. Note that the set of automorphisms forms a group under composition.)
- 11. What are the units in the ring of Gaussian integers $\mathbb{Z}[i]$?
- 12. a) Let S be a subset of the complex numbers $\mathbb C$. Show that the intersection of all the fields $F\subseteq \mathbb C$ which contain S is a field.
- b) Let F_1, F_2 be subfields of $\mathbb C$, and assume that $[F_1:\mathbb Q]=[F_2:\mathbb Q]=2$ and $F_1\neq F_2$. Let F_3 be the minimal subfield of $\mathbb C$ which contains $F_1\cup F_2$. Show that $[F_3:\mathbb Q]=4$.
- 13. a) Let F be a finite field of order p^a . Show that every non-zero element $x \in F$ satisfies $x^{p^a-1}=1$.
 - b) Explain why the polynomial $x^n 1$ can have at most n roots in F.
- c) Show that the non-zero elements of F , endowed with F 's multiplication, form a cyclic group of order $\,p^a-1$.