Tier 1 Algebra Exam

January 2003

- 1. Give an example of each of the following. (No proofs required.)
 - (a) A square matrix with real coefficients which is not diagonalizable.
 - (b) A linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ whose minimal polynomial is $x^2 2x + 1$.
 - (c) An element of the alternating group A_{10} of order 12.
 - (d) Four nonisomorphic groups of order 66.
 - (e) A commutative ring with a prime ideal which is not maximal.
- 2. Suppose p_1, p_2, p_3 , and p_4 are real polynomials of degree 3 or less. Determine whether either of the following two conditions implies that the set $\{p_1, p_2, p_3, p_4\}$ is linearly dependent in the vector space of real polynomials. In each case, offer a proof or a counterexample.
 - (a) $p_i(0) = 1$ for all *i*.
 - (b) $p_i(1) = 0$ for all *i*.
- 3. Let $T:U\to V$ be a linear transformation of vector spaces and let $W\subset V$ be a subspace. Prove that $T^{-1}(W)$ is a subspace of U and that

$$\dim(T^{-1}(W)) \ge \dim(U) - \dim(V) + \dim(W).$$

- 4. Construct a field F with 16 elements as a quotient of $\mathbb{F}_2[x]$ and find a polynomial in $\mathbb{F}_2[x]$ whose image $\alpha \in F$ satisfies $\alpha^3 = 1$ and $\alpha \neq 1$. Justify your answer.
- 5. Let R be an infinite ring and let $\varphi: M_2(\mathbb{Z}) \to R$ be a surjective ring homomorphism. Show φ is an isomorphism.
- 6. Let H and K be subgroups of a group G. Show that $HK = \{hk : h \in H, k \in K\}$ is a subgroup if and only if HK = KH.
- 7. For each $(x,y) \in \mathbb{Z}^2$, let $\langle (x,y) \rangle$ denote the subgroup of \mathbb{Z}^2 generated by (x,y). Express $\mathbb{Z}^2/\langle (x,y) \rangle$ as a direct sum of cyclic groups.
- 8. Let $\alpha \in \mathbb{C}$ be an algebraic number, i.e. a root of a nonzero polynomial with rational coefficients.

- (a) Show that α is a root of a unique monic irreducible polynomial f(x) with rational coefficients.
- (b) Show $\mathbb{Q}[\alpha]$ is a field.
- (c) Show that the degree of f(x) equals $[\mathbb{Q}[\alpha] : \mathbb{Q}]$.
- (d) Write down f(x) when $\alpha = \sqrt{2} + \sqrt{3}$. Justify your answer.
- 9. Let F[x] denote the polynomial ring over a field F. Let R denote the subring $F[x^2, x^3]$.
 - (a) Show $R \subsetneq F[x]$.
 - (b) Show that the quotient field of R is F(x).
 - (c) Show that R is not a unique factorization domain.
- 10. For a 2×2 matrix A with real coefficients, define e^A to be the matrix

$$\sum_{n=0}^{\infty} \frac{1}{n!} A^n.$$

Assuming that above series converges and that for all 2×2 matrices B and C

$$Be^{A}C = \sum_{n=0}^{\infty} \frac{1}{n!} BA^{n}C,$$

compute e^A where $A = \begin{pmatrix} 0 & 2 \\ 3 & 1 \end{pmatrix}$.