TIER ONE ALGEBRA EXAM

- (1) Consider the matrix $A = \begin{pmatrix} -4 & 18 \\ -3 & 11 \end{pmatrix}$.
 - (a) Find an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix.
 - (b) Using the previous part of this problem, find a formula for A^n where A^n is the result of multiplying A by itself n times.
 - (c) Consider the sequences of numbers

$$a_0 = 1, b_0 = 0, a_{n+1} = -4a_n + 18b_n, b_{n+1} = -3a_n + 11b_n.$$

Use the previous parts of this problem to compute closed formulae for the numbers a_n and b_n .

- (2) Let P_2 be the vector space of polynomials with real coefficients and having degree less than or equal to 2. Define $D: P_2 \to P_2$ by D(f) = f', that is, D is the linear transformation given by taking the derivative of the polynomial f. (You needn't verify that D is a linear transformation.)
- (3) Give an example of each of the following. (No justification required.)
 - (a) A group G, a normal subgroup H of G, and a normal subgroup K of H such that K is not normal in G.
 - (b) A non-trivial perfect group. (Recall that a group is *perfect* if it has no non-trivial abelian quotient groups.)
 - (c) A field which is a three dimensional vector space over the field of rational numbers, \mathbb{Q} .
 - (d) A group with the property that the subset of elements of finite order is not a subgroup.
 - (e) A prime ideal of $\mathbb{Z} \times \mathbb{Z}$ which is not maximal.
- (4) Show that any field with four elements is isomorphic to

$$\frac{\mathbb{F}_2[t]}{(1+t+t^2)}.$$

(5) Let \mathbb{F}_p denote a field with p elements, p prime. Consider the ring

$$R = \frac{\mathbb{F}_p[x, y]}{\langle x^2 - 3, y^2 - 5 \rangle}$$

where $\langle x^2 - 3, y^2 - 5 \rangle$ denotes the ideal generated by $x^2 - 3$ and $y^2 - 5$. Show that R is not a field.

(6) Let

$$R = \frac{\mathbb{C}[x,y]}{(x^2 + y^3)}$$

where $\mathbb{C}[x,y]$ is the polynomial ring over the complex numbers \mathbb{C} with indeterminates x and y. Similarly, let S be the subring of $\mathbb{C}[t]$ given by $\mathbb{C}[t^2,t^3]$.

- (a) Prove that R and S are isomorphic as rings.
- (b) Let I be the ideal in R given by the residue classes of x and y. Prove that I is a prime ideal of R but not a principle ideal of R.
- (7) Suppose that $T: \mathbb{R}^n \to \mathbb{R}^n$ is a linear map.
 - (a) Suppose n=2 and $T^2=-I$. Prove that T has no eigenvectors in \mathbb{R}^2 .
 - (b) Suppose n=2 and $T^2=I$. Prove that \mathbb{R}^2 has a basis consisting of eigenvectors of T.
 - (c) Suppose n=3. Prove that T has an eigenvector in \mathbb{R}^3 . Give an example of an operator T such that T has an eigenvector in \mathbb{R}^3 , but \mathbb{R}^3 does not have a basis consiting of eigenvectors of T.
- (8) Let p(x) and q(x) be polynomials with rational coefficients such that p(x) is irreducible over the field of rational numbers \mathbb{Q} . Let $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ be the complex roots of p, and suppose that $q(\alpha_1) = \alpha_2$. Prove that

$$q(\alpha_i) \in \{\alpha_1, \alpha_2, \dots, \alpha_n\}$$

for all $i \in \{2, 3, ..., n\}$.

- (9) Let F be a field containing subfields F_{16} and F_{64} with 16 and 64 elements respectively. Find (with proof) the order of $F_{16} \cap F_{64}$.
- (10) Let G be a finite group and suppose H is a subgroup of G having index n. Show there is a normal subgroup K of G with $K \subset H$ and such that the order of K divides n!.
 - (a) Find a matrix representing the linear function D in the basis $\{1, x, x^2\}$.
 - (b) Determine the eigenvalues and eigenvectors of D.
 - (c) Determine if P_2 has a basis such that D us represented by a diagonal matrix. Why or why not?
- (11) Suppose that W is a non-zero finite dimensional vector space over \mathbb{R} . Let T be a linear transformation of W to itself. Prove that there is a subspace U of W of dimension 1 or 2 such that $T(U) \subset U$ (i.e. U is an invariant subspace. Here T(U) denotes the set $\{T(u)|u\in U\}$.)