Tier 1 Examination - Algebra

January 3, 2002

Justify all answers! All rings are assumed to have an identity element. The set of real numbers is denoted by R and the set of rational numbers by Q. The set of integers modulo n is denoted \mathbb{Z}_n . The order of a set S is denoted |S|.

- (10)1. What is the order of the group of invertible 2×2 matrices with entries in \mathbb{Z}_5 ?
- (10) 2. Let G and H be finite abelian groups of the same order 2^n . Prove that if for each integer m,

$$|\{x \in G | x^{2^m} = 1\}| = |\{x \in H | x^{2^m} = 1\}|,$$

then G and H are isomorphic.

- (10)3. Prove or give a counterexample for each of the following:
- (a) For every integer n there is a finite group that cannot be generated by n elements.
- (b) If G and H are finite groups such that |G| and |H| are relatively prime, then there exists a unique homomorphism from G to H.
- (c) Every quotient group H of a group G is isomorphic to a subgroup of G.
- (10)4. Prove that there exist algebraic numbers α and β , each of degree 3, such that $[\mathbf{Q}(\alpha,\beta):\mathbf{Q}]=6$.
- (10)5. Show that for every prime p there are exactly $\frac{p^3-p}{3}$ irreducible cubic polynomials with leading coefficient 1 over the field \mathbb{Z}_p .
- (10)6. Prove or disprove: Every maximal ideal of the real polynomial ring $\mathbf{R}[x,y]$ is of the form (x-a,y-b) for some $a,b\in\mathbf{R}$.
- (10)7. Prove that for every positive integer $n \ge 6$ which is not prime, there exist integers a and b such that the congruence equation $x^2 + ax + b \equiv 0 \pmod{n}$ has more than two solutions modulo n.

- (10)8. Let V be a finite dimensional complex vector space and $T:V\to V$ a linear transformation. Suppose there exists $v\in V$ such that $\{v,T(v),T^2(v),\ldots,T^{n-1}(v)\}$ is a basis for V. Show that the eigenspaces of T are all 1-dimensional.
- (10)9. Prove that a 5×5 skew-symmetric matrix A has determinant 0. (Recall that a matrix is called skew-symmetric if the transpose of A is the negative of A.)
- (10)10. For each of the following conditions on a complex square matrix M, determine whether the condition implies that M is diagonalizable.
- (a) $M^2 = M$
- (b) $M^3 = I$
- (c) $M^4 = 0$