Algebra Tier 1 Examination

August 2001

Time: 4 hours

Notation:

 \Re : field of real numbers \Re^n : Euclidean n-space

 \mathbb{Z} : ring of integers

 \mathbb{Z}_n : ring of integers modulo n

①: field of rational numbers

- 1. Give examples (no need to prove anything) OR give mathematical reasons if you can't give examples of the following:
 - (a) An integral domain which is not a U.F.D. (unique factorization domain)
 - (b) A field with 6 elements.
 - (c) A 5×3 matrix P and a 3×5 matrix Q (with entries in \Re) such that $P \cdot Q = I_5$ (identity matrix of size 5).
 - (d) A prime number p such that $x^2 x + 2$ divides $3x^3 7x^2 + 40x + 27$ when considered as elements of $\mathbb{Z}_p[x]$.
 - (e) An element of order 15 in S_9 .
- 2a. Let G be a finite group of order n. Let H be a unique subgroup of G of index n. Show that H is a normal subgroup. Give example of a finite group n and n of the same index. (5 points)
- 2b. Find all elements in \mathbb{Z}_7 which are squares of other elements. Use this and the natural homomorphism $f: \mathbb{Z} \longrightarrow \mathbb{Z}_7$ to show that the arithmetic sequence 10, 17, 24, 31 has no perfect squares.

(5 points)

- 2c. Describe all the abelian groups G of order 500 such that $g^{50} = e$ (identity of G) for all $g \in G$. (Show all the work.)
- 3a. Let H and K be cyclic groups of order 6 and 4 respectively with generators a and b respectively. Let $G = H \times K$. Let L be the subgroup of G generated by (a^5, b^2) . Find the order of the element $\alpha = (a, b) \cdot L$ in the factor group G/L. Hence or otherwise conclude that G/L is cyclic. (8 points)

- 3b. Let G be a group of order 21 which contains unique subgroups of order 3 and 7. Find the number of elements of order 21 in G. (7 points)
- 4a. Let R be a commutative ring with 1. For any $x \in R$, let $I_x = \{r \in R \mid rx = 0\}$. Show that I_x is an ideal in R. Find this ideal for $R = \mathbb{Z}_{24}$ and x = 15. (5 points)
- 4b. Let R be a commutative ring with 1 which has exactly 3 ideals $\{0\}$, J and R. If $a \in R$ is not a zero divisor then show that a is a unit. (Hint: If a is not a unit then show first that $R \cdot a = R \cdot a^2 = J$ and then get a contradiction. (8 points)
- 5a Show that $x^2 4x 4$ is irreducible in $\mathbb{Z}_5[x]$. (2 points)
- 5b. Show that $R = \mathbb{Z}_5[x]/I$ (where *I* is the ideal generated by $x^2 4x 4$) is a field. (You may quote and use any relevant results). Find also the number of elements in *R*. (5 points)
- 5c. Let I, R be as in $\{5b\}$. Let $\alpha = x + I \in R$. For this element, find the additive order (i.e. order as an element of the additive group (R, +)) and the multiplicative order (i.e order as an element of the multiplicative group $(R \{0\}, \cdot)$.
- 5d. Find elements $a, b \in \mathbb{Z}_5$ such that $(2\alpha + 1)(a\alpha + b) = 1$. (5 points)
- 6a Let V be a real vector space and let $S = \{v_1, v_2, \dots v_m\}$ be a maximal linearly independent set (i.e. S is not properly contained in another linearly independent set. Show that S is a basis of V.

 (4 points)
- 6b. Let $V = \Re^3$. Let $W = \{(a, b, c) \in \Re^3 \mid a = 2b + 3c \text{ and } b^2 = ac\}$. Determine with justification if W is a subspace of V. (4 points)
 - 7. Let V denote the vector space of polynomials of degree at most 1 with real coefficients. Consider the linear transformation $T:V\longrightarrow V$ given by T(f(x))=-f(1)+f(-3)x (where f(a) is the value of the polynomial f(x) at a).
 - (a) Find the matrix of T with respect to the basis $\{1, x\}$ of V. (3 points)
 - (b) Find the eigenvalues of T and a basis for each eigenspace. (5 points)
 - (c) Is T diagonalizable? Justify your answer. (4 points)