Tier 1 Examination - Algebra

January 4, 2001

Justify all answers! All rings are assumed to have an identity element. The set of real numbers is denoted by R. The set of integers modulo n is denoted Z_n . The group of permutations on n letters is denoted S_n .

- (20)1. Give an example of each of the following. No justification is required.
- (a) A nonabelian group of order 18.
- (b) An infinite commutative ring R such that for all $y \in R$, y + y + y = 0.
- (c) A 3 by 3 real matrix that is diagonalizable over the complex numbers but not over the reals.
- (d) A unique factorization domain that is not a principal ideal domain.
- (e) An element of order 3 in $GL_2(\mathbf{R})$.
- (10) 2. Let G be a group with the property that $g^2 = e$ for all $g \in G$. Prove G is abelian.
- (10)3. Determine the number of homomorphisms from S_3 to $\mathbf{Z}_2 \times \mathbf{Z}_4$.

(10)4. Find
$$\lim_{n\to\infty} \begin{pmatrix} 2 & 3 \\ -1/2 & -1/2 \end{pmatrix}^n$$
.

- (10)5. Let n be a positive odd integer and let $A, B \in M_n(\mathbb{R})$ such that $A^2 = B^2 = I$. Prove that A and B have a common eigenvector (not necessarily with the same eigenvalue).
- (10)6. Let R and S be commutative rings and let $\phi: R \to S$ be a ring homomorphism. Suppose there is an ideal I of R such that $\ker(\phi) \subset I \subset R$ (proper containments). Prove that the image of ϕ is not a field.
- (10)7. Let F be a subfield of \mathbb{R} and suppose m and n are positive integers with $\sqrt{m} + \sqrt{n} \in F$. Prove that \sqrt{m} and \sqrt{n} are in F.
- (10)8. Let K be a field and let K^{\times} denote the group of nonzero elements of K. Prove that K^{\times} contains at most two elements of order 6.

- (10)9. Let $G = (\mathbf{Q}, +)/(\mathbf{Z}, +)$, where $(\mathbf{Q}, +)$ denotes the group of rational numbers under addition and $(\mathbf{Z}, +)$ denotes the subgroup of integers under addition. Prove that G is an infinite group in which every element has finite order.
- (15)10. (a) Let R be a commutative ring and suppose I and J are ideals of R such that I+J=R, where $I+J=\{i+j|i\in I,j\in J\}$. vProve the map $\phi:R/I\cap J\to R/I\times R/J$ given by $\phi(r+I\cap J)=(r+I,r+J)$ is an isomorphism of rings.
- (b) Let R be a commutative ring containing exactly 4 ideals (including $\{0\}$ and R). Let I and J denote the other two ideals and suppose they are incomparable, that is $I \not\subseteq J$ and $J \not\subseteq I$. Prove that R is isomorphic to the direct product of two fields.