Tier One Algebra Exam

August, 2000

1. (14 points) Let A be the 3×3 matrix all of whose entries are 1, i.e.

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

- (i) Find the characteristic polynomial of A.
- (ii) Find the minimal polynomial of A.
- (iii) Find all eigenvalues of A.
- (iv) Is A diagonalizable? If the answer is yes, find P such that PAP^{-1} is diagonal. If the answer if no, provide a reason.
- 2. (8 points) Let T and S be linear transformations from R^n to R^m . The coincidence set for T and S is defined to be the set $C(T,S) = \{w \in R^m \mid T(x) = w = S(y), \text{ for some } x,y \in R^n\}$. Let T and S be the linear transformations from R^4 to R^3 represented by the 3×4 matrices

$$T = \begin{pmatrix} 1 & 2 & 0 & -1 \\ 5 & 4 & 1 & 0 \\ 3 & 0 & 1 & 2 \end{pmatrix} \quad \text{and} \quad S = \begin{pmatrix} 1 & 2 & 1 & 0 \\ -1 & 0 & 3 & 2 \\ -1 & 4 & 11 & 6 \end{pmatrix}$$

Find a basis for C(T, S).

- 3. (12 points) Let G be a group.
- (i) Prove that the intersection of a family $F = \{H_t : t \in T\}$ of subgroups of G is a subgroup.
- (ii) Let H be a subgroup of G. Prove that the intersection $K = \cap \{gHg^{-1} : g \in G\}$ of all conjugates of H is a normal subgroup.
 - (iii) Let H and K be as in (ii). If $[G:H] < \infty$, prove that $[G:K] < \infty$.

- 4. (6 points) Give an example of a nonabelian group with every proper subgroup abelian.
- 5. (6 points) Let S_{10} denote the symmetric group in 10 letters. Find the smallest n such that $a^n = 1$, for all $a \in S_{10}$. Justify your answer.

6. (10 points)

- (i) Let G be an abelian group of order mn, where m and n are relatively prime. Let $H := \{g \in G : |g| \text{ divides } m\}$ and $K := \{g \in G : |g| \text{ divides } n\}$. Prove that the homomorphism $H \times K \to G$ induced by inclusion is an isomorphism.
- (ii) Let G be an abelian group of order $p_1^{e_1} \cdots p_t^{e_t}$, where p_i 's are distinct primes. For each prime p dividing |G|, let $G_p := \{g \in G : |g| = p^n \text{ for some } n\}$. Prove that $G \cong G_{p_1} \times \cdots \times G_{p_t}$.

7. (12 points)

- (i) Let p and q be distinct primes. Let n = pq. Prove that $\mathbb{Z}_n \cong \mathbb{Z}_p \times \mathbb{Z}_q$ as rings.
- (ii) Let n, p, q be as in (ii). Let ℓ be any integer. Prove that $a^{1+\ell(p-1)(q-1)} \equiv a \pmod{n}$ for all $a \in \mathbb{Z}$.
- 8. (4 points) Give three examples of nonisomorphic rings of order 4.
- 9. (10 points)
- (i) Prove: If p is prime, $f(x) \in \mathbb{Z}_p[x]$ is a polynomial, and f(a) = 0, then (x a) is a factor of f(x).
 - (ii) Does this remain true if p is not prime? Explain.

10. (10 points)

- (i) Prove that $x^2 3$ and $x^5 2$ are irreducible in $\mathbb{Q}[x]$.
- (ii) Prove that $x^5 2$ is irreducible in $\mathbb{Q}(\sqrt{3})[x]$.
- 11. (8 points) Write a one or two paragraph essay explaining (without proofs) why trisecting the angle $\pi/3$ is impossible using a straightedge and a compass.