

Demonstrating Geologic Time

Lesson Plans and Activities

By Polly R. Sturgeon

Targeted Age:

Elementary to high school

Activity Structure:

Individual or partner activity

Indiana Standards and Objectives:

3.ESS.4, 4.ESS.3, 4.LS.2, 7.ESS.2, 8.LS.5, 8.LS.8, ES.5.4, ES.5.5, ES.5.6, Env.5.2

MATERIALS NEEDED

- Geologic event student cards
- Geologic event timeline cards
- Geological time scale
- Rope, receipt tape, or paper
- Measuring tape or meter stick
- Geologic Time Discovery Trunk (optional)

Introduction

In this lesson, students will organize geological events on a timeline. Students will analyze major evolutionary events and mass extinctions in order to construct a scaled model of Earth's 4.6 billion-year-old history.

Vocabulary

Chronology-the arrangement of events in order from oldest to most recent

Eon—the largest unit of geological time

Era—the second-largest unit of geological time; longer than a period but shorter than an eon

Extinction—the end of existence for a species, family, or larger group of organisms, typically over a period of 15 to 30 million years

Fossil record—a group of fossils which have been arranged in chronologic and taxonomic order

Geologic time—a chronological list of events in Earth's history using subdivided units of time; also known as "Deep Time"

Mass extinction—events in which at least 75 percent of all species go extinct within several thousands to millions of years

Period—the third-largest unit of geological time, longer than an epoch and shorter than an era

Background Information

The geological time scale is a reference system used to describe the distribution of rocks and fossils throughout time and space. Throughout the Earth's 4.6-billion-year history, volcanism, glaciation, asteroid impacts, and other major events have affected the living organisms that have inhabited the planet. Because the sheer expanse of time can be difficult to grasp, geologists divide Earth's history into smaller units of time. Most of the boundaries on the geological time scale correspond to major events in the fossil record, such as mass extinctions or the evolution of major organism groups. The ages associated with these boundaries are the result of hundreds of years of scientific study. Each date is determined by radiometric dating, which allows scientists to discover precise ages of mineral crystallization, and the comparison of millions of fossils in collections around the globe.

The geological time scale is organized into four units: eons, eras, periods, and epochs. The largest unit of geologic time is an eon. There are four eons in the history of the Earth. The three earliest and longest eons (Hadean, Archean, and Proterozoic) are informally referred to as the "Precambrian" or "Precambrian Time."

- The Hadean Eon (4,600–4,000 million years ago) is named for the Greek underworld Hades, and is characterized by global volcanism and asteroid impacts.
- The Archean Eon (4,000–2,500 million years ago) comes from the Greek word for "origin," and is characterized by a methane-rich atmosphere and the introduction of single-celled organisms.
- The Proterozoic Eon (2,500–542 million years ago) comes from the Greek word for "early life," and is characterized by the oxygenation of the atmosphere and evolution of soft-bodied multicellular organisms.
- The Phanerozoic Eon (542 million years ago-present) comes from the Greek word for "visible life, " and is characterized by the evolution of multicellular organisms into diverse forms. We are living in the Phanerozoic Eon.

Eons are subdivided into eras, which are the second-largest unit of geologic time. For the sake of simplicity, eras within the Precambrian are omitted from this lesson plan. The Phanerozoic Eon is organized into three eras.

• The Paleozoic Era (542–251 million years ago) comes from the Greek word for "old life," and is characterized by the introduction of invertebrates (such as trilobites and crinoids), land plants, and vertebrates (such as fish). All of Indiana's bedrock is Paleozoic in age.

- The Mesozoic Era (251–65.5 million years ago) comes from the Greek word for "middle life." It is known as the "Age of Dinosaurs," and is characterized by the first appearance of mammals and flowering plants.
- The Cenozoic Era (65.5 million years ago–present) comes from the Greek word for "new life," and is known as the "Age of Mammals." We are living in the Cenozoic Era.

Eras are subdivided into periods, which are the third-largest unit of geologic time. Periods are characterized by geological events on a regional scale. For example, rocks from the Pennsylvanian Period in Indiana are exemplified by abundant plant fossils and coal seams. Periods can be subdivided into a smaller period of time known as an epoch, but those are omitted from this lesson.

- Cambrian Period (542–488.3 million years ago)
- Ordovician Period (488.3–443.7 million years ago)
- Silurian Period (443.7–416 million years ago)
- Devonian Period (416–359.2 million years ago)
- Mississippian Period (359.2–318.1 million years ago) *
- Pennsylvanian Period (318.1–299 million years ago) *
- Permian Period (299–251 million years ago)
- Triassic Period (251–199.6 million years ago)
- Jurassic Period (199.6–145.5 million years ago)
- Cretaceous Period (145.5–65.5 million years ago)
- Paleogene Period (65.5–23 million years ago)
- Neogene Period (23–2.6 million years ago)
- Quaternary Period (2.6 million years ago-present)

* Outside of North America, the Mississippian and Pennsylvanian periods are known as the Carboniferous Period.

Five mass extinctions have occurred within Earth's 4.6-billion-year history. Mass extinctions are defined as events in which at least 75 percent of all species are lost within several thousands to millions of years. Each mass extinction event forms the end boundary of a geologic period (e.g, End Devonian extinction, End Permian extinction), and leads to an increase in diversity and territory for surviving species.

The diagram below illustrates the "Big Five" mass extinctions with vertical black lines. Notice the sudden decrease in organisms during the extinction event, followed by an increase in biodiversity after the event.

Diversity of marine animal families over geologic time

- End Ordovician extinction– Glaciation within the supercontinent Gondwana produced two pulses of extinction over a period of several million years. The onset of glaciation caused sea levels to drop and water temperature to cool, which affected shallow-water communities. When the glaciers receded, sea levels rose and ocean oxygen levels declined, causing another pulse of extinction. About 85 percent of all species were lost, including many trilobites, brachiopods, and corals. Deep-water organisms largely survived and would go on to diversify in the Silurian Period.
- End Devonian extinction A series of global cooling events occurred over a 20-million-year period, possibly due to the depletion of carbon dioxide by land plants and/or large-scale volcanism. About 75 percent of species went extinct, including all armored fish (placoderms) and many species of coral, reef-building sponges (stromatoporoids), and trilobites. Small vertebrates, such as tetrapods, survived and would go on to evolve into reptiles, amphibians, and birds.
- End Permian extinction– Widespread fires, ash clouds, and ocean acidification caused by massive volcanism in Siberia resulted in the "Great Dying," in which 96

percent of all species went extinct over a span of about 50,000 years. All species of trilobites, blastoids, and sea scorpions (eurypterids) were lost, and nearly all species of brachiopods, crinoids, gastropods, and corals went extinct. On land, about two-thirds of amphibians and many plant species died. The loss of major predators cleared a path for the rise of dinosaurs.

- End Triassic extinction– Massive volcanic eruptions within the supercontinent Pangea caused climate change and ocean acidification. About 80 percent of species went extinct, including all conodonts and many species of reptiles. Dinosaurs largely survived.
- End Cretaceous extinction– A large asteroid impacted the Yucatan Peninsula, causing ash to block sunlight around the world and oxygen levels to drop. About 76 percent of all species were lost, including all non-bird dinosaurs, large marine reptiles, pterosaurs, and ammonites. Mammals quickly adapted and filled new ecological niches.

The phenomena that led to these mass extinctions remain relevant to our planet today. Many scientists believe that the Earth is currently experiencing a sixth mass extinction, named the "Holocene extinction" for its onset during the Holocene Epoch (11,650 years ago-present). Since the loss of Ice Age megafauna 10,000 years ago, humans have domesticated plants and animals, extracted fossil fuels, and expanded to every continent on Earth. These actions have helped our species to thrive, but have also contributed to the depletion of natural resources, ocean acidification, and rapid increase of greenhouse gases.

The combination of human activity and fluctuations in global climate have pushed many species to extinction. From passenger pigeons and dodo birds to golden frogs and northern white rhinoceros, species are going extinct at an increasing rate. The fossil record is critical in helping scientists understand today's changes in order to inform our future.

Time (millions of years ago)	Scale	Distance to Add	Major Event	Era				
4600 (4.6 billion)	460 cm (4 m 60 cm)	0	Planet Earth forms	Precambrian Time				
4300 (4.3 billion)	430 cm (4 m 30 cm)	30 cm	Continents form					
3800 (3.8 billion)	380 cm (3 m 80 cm)	50 cm	Oceans form					
3500 (3.5 billion)	350 cm (3 m 50 cm)	30 cm	First prokaryotes					
2400 (2.4 billion)	240 cm (2 m 40 cm)	110 cm	Breathable atmosphere					
2100 (2.1 billion)	210 cm (2 m 10 cm)	30 cm	First eukaryotes					
600	60 cm	150 cm	First jellyfish					
542	54.2 cm	5.8 cm	Cambrian Explosion	Paleozoic Era				
530	53 cm	1.2 cm	First fish					
470	47 cm	6 cm	First land plants					
444	44.4 cm	2.6 cm	First mass extinction					
400	40 cm	4.4 cm	First insect					
375	37.5 cm	2.5 cm	First amphibian					
365	36.5 cm	1 cm	Second mass extinction					
340	34.5 cm	2 cm	Indiana limestone deposited					
300	30 cm	4.5 cm	Indiana coal deposited					
252	25.2 cm	4.8 cm	Third mass extinction	Mesozoic Era				
240	24 cm	1.2 cm	Age of Dinosaurs begins					
220	22 cm	2 cm	First mammal					
200	20 cm	2 cm	Fourth mass extinction					
150	15 cm	5 cm	First bird					
130	13 cm	2 cm	First flowering plant					
70	7 cm	6 cm	First grass					
65	6.5 cm	0.5 cm	Fifth mass extinction					
55	5.5 cm	1 cm	First horse	Cenozoic Era				
6	0.6 cm (6 mm)	4.9 cm	First hominids					
2.6	0.26 cm (2.6 mm)	0.34 cm	Ice Age begins					
0.3 (300,000 yrs ago)	0.002 cm (.02 mm)	0.0005 cm	First humans					
0.015 (15,000 yrs ago)	0.001 5 cm (.015 mm)	0.0005 cm	Glaciers retreat from Indiana	1				
0.01 (10,000 yrs ago)	0.001 cm (.01 mm)	0.0005 cm	Megafauna extinction					

Procedure

1. Assess students' knowledge of geologic time by asking the following guiding questions. Discuss ways in which living things have changed over time.

How old is the Earth? When did life first appear? What kinds of living things first formed on Earth? Do those organisms still exist? When did reptiles first appear? When did humans first appear? Did dinosaurs and humans live on Earth at the same time? What is different about the Earth now than it was in the geologic past?

- 2. Explain that a geologic time scale is used to organize Earth's 4.6 billion-year-old history. Introduce the geologic time scale and explain that the units of geologic time (such as "era" and "period") are not equal in length because they are based on major changes in the fossil record.
- 3. OPTIONAL: Evaluate the distributions of geologic eras in Earth's history with a pie chart. Note that the Hadean, Archean, and Proterozoic Eons are referred to as "Precambrian Time" in the example below. Subtract the beginning and end of each era to get the total number of years in the era, then convert that number to a percentage and graph the results. Does the pie chart reflect the notion that eras are based on major changes in the fossil record? Ask students to hypothesize which era had the most changes based on its percentage of time.

Geologic Era	Begin (mya)	End (mya)	# Years (mya)	Percentage (# Years ÷ 4600) x 100
Precambrian Time	4600	542	4058	88.3
Paleozoic Era	542	251	291	6.3
Mesozoic Era	251	65.5	185.5	4
Cenozoic Era	65.5	0	65.5	1.4

4. Explain that 4,600,000,000 (4.6 billion) is too large of a number for people to easily grasp. To assist understanding, geologists represent Earth's history on a timeline where a certain length is equal to a certain number of years. The timeline in this activity is 4 meters and 60 centimeters (or 15.09 feet) in length, and uses the following scale:

1 meter = 1 billion years 1 centimeter = 10 million years 1 millimeter = 1 million years

ADAPTATION: If space is available, create a longer timeline using the scale of 1 meter per 100 million years. This will create a 46-meter-long (or 150.9-foot) timeline.

- 5. OPTIONAL: Reinforce the concept of a timeline by graphing a student's life on sheet of notebook paper (typically 11 inches or 27.9 centimeters long). Determine a scale (such as 2.5 centimeters = 1 year) and ask students to come up with 10 major life events. Place each life event on the timeline. Group the events into periods, such as "Preschool," "Elementary School," and "Middle School." Make comparisons to the geologic time scale.
- 6. Distribute a set of Geologic Event student cards to each student or student pair. Instruct students to put the events in order from oldest to most recent. Undoubtedly there will be errors, and most students will be surprised that jellyfish are so much older than humans! Allow for class discussion as events are placed into the correct order.
- 7. Position a 4-meter-and-60 centimeter-long timeline made of rope, toilet paper, or receipt tape in the classroom where it is visible to all students. Instruct the class to place the Geologic Event timeline cards on the timeline. Earlier events will be separated by long periods of time in the beginning of the timeline, while the most recent events will be very condensed at the end of the timeline. Ask students to identify any patterns that they see.

ADAPTATION: For younger students, place a pre-measured mark on the timeline for each event card. For advanced students, ask them to convert geologic time to centimeters using the scale, then measure the distance between each event with a meter stick or measuring tape.

8. Revisit the concept that geological eras are based upon major changes in the fossil record. Discuss how life has grown in complexity over time and how extinctions often allow surviving species to thrive. Ask students to make observations and provide examples from the timeline.

OPTIONAL: Use the Geologic Time Discovery Trunk or other fossil specimens to explore the organisms involved in major evolutionary events.

9. Discuss the placement of humans along the timeline. Where would each student's personal timeline fit into the geologic timeline? Human existence is a tiny fraction of Earth's long history, yet our species is causing rapid changes to global climate and biodiversity. Discuss the possibility of a sixth major extinction.

Demonstrating Geologic Time

Lesson Plans and Activities

By Polly R. Sturgeon

Name:

Class Period:

- MATERIALS NEEDED
- Geologic event student cards
- Geologic event timeline cards
- Geological time scale
- Rope, receipt tape, or paper
- Measuring tape or meter stick
- Geologic Time Discovery Trunk (optional)
- 1. Place the Geologic Event cards in chronological order, from oldest to most recent.
- 2. Order the following major events from oldest (6) to most recent (1).

3. Did the timing of any major events in geologic time surprise you? List at least one example below.

4. For what percentage of Earth's history has life existed on Earth? How long have humans existed on Earth? Use your geologic time scale to answer this question.

(Age of first life	÷ Age of Earth	_) x 100 =	_%
(Age of first human	÷ Age of Earth	_) x 100 =	_%

5. How do scientists determine when a geologic era begins or ends? Give an example.

6. Many scientists believe that the Earth is currently experiencing a sixth mass extinction, named the "Holocene extinction" for its onset during the Holocene Epoch. Since the loss of Ice Age megafauna 10,000 years ago, humans have domesticated plants and animals, extracted fossil fuels, and expanded to every continent on Earth. These actions have helped our species to thrive, but also have contributed to the depletion of natural resources, ocean acidification, and rapid increase of greenhouse gases.

Do you think the Earth is experiencing a sixth mass extinction? Why or why not?

GSA GEOLOGIC TIME SCALE v. 5.0

7	BDY. AGES (Ma)		720	0		1200			1800			- 230	250		000	1087		- 320			360		400	
ABRIAN	PERIOD	EDIACARAN	CRYOGENIAN	IONIAN	STENIAN	ECTASIAN	CALYMMIAN	STATHERIAN	OBOSIBIAN		RHYACIAN		SIDERIAN											
ECAN	ERA	NEOPRO- TEROZOIC MESOPRO- TEROZOIC					PALEOPRO- TEROZOIC					VEOARCHEAN			MESO- ARCHEAN			PALEO- ARCHEAN			EOARCHEAN			
ц Ш	EON			4)ZC	EB(ШC)Hc	4						Ν	IAE	HE	<u>J</u>	ŦΑ				HADEAN
ш.	AGE (Ma)	111	750 -	III Ş		1250	1500	1750		2000					2750		3000			3500		3750 _		,
<u>I</u> C	E PICKS (Ma)	NGIAN 251.90 254.14	NGIAN 259.1 IIAN 265.1 AN 268.8	AIN 272.95 31AN ~283.5	11AN 290.1 11AN 295.0 AN 208.0	AN 203.7 VIAN 307.0 VIAN 315.2	AIAN 323.2 OVIAN 330.9	NN	ISIAN 358.9	~372.2	IAN ~382.7 AN ~3877	AN ~393.3	AN ~407.6	VIAN ~419.2 ~423.0	014N 442556 410 430.5 430.5 433.4 5014N	AN		ILIAN ~467.3 IAN ~470.0	N ~477.7 DCIAN ~65	0 41010 ~ 489.5 0 ~ 494	GIAN ~ 49/ ~ 500.5 ~ ~504.5	~514	~521	IIAN 5410
EOZC	CH AGE	n- CHANGHS	Ia- CAPITAN UCHIAPI	RUNGUI	SAKMAF	E GZHEL KASIMO LE MOSCO	Y BASHKI	LE VISE/	FAMEN		FRASN GIVET	EIFEL	PRAG	LOCHKC	DW LUDFOR GORST HOMER DCK SHEINWOG	Y TELYCH	E KATI	LE DARRIM DAPING	TREMAD	N- AGE - V JIANGSH/ PAIBIA	13 GUZHAN	AGE AGE	E- AGE	AN FORTUN
Ш	EPOC	Lopi	giar Guad Iupia	Cisur	lian	LATE MIDDI	EARL	MIDDI	EARI	LATE			EARL	PRIDO		LLAND	LATE	MIDDI	EARL	FURO GIAN	Epoch	Epoch	TERR	NEUVI
PA	AGE (Ma)		260 L		d ' '	SUOS SUOS		68 7 1 1 7 1 1 7 11 7 1 7 1 1111111111111		N∀ - 1	/INO/ - T - T gg)E	400	420 - 1	1419U	8ודו 49 4	NAIC	⁶⁶ ' \\O(0 R C	- 1 - 1	500 NA	IRBN T T		
	a) KS	0, -	:	ه دن ه	ب م	0.5	13	25	32.9 39.8	45.0	52.1	57.3	63.5 66.1 68.3	70.3	7 08	/ 00	90.3 00.3	01.3	08.5		27	37	42	72
OIC	AGE PIC	MAASTRICHTIAN 66	CAMPANIAN	SANTONIAN 83 CONIACIAN 80	TURONIAN CENOMANIAN	ALBIAN	~	BARREMIAN	VALANGINIAN	BERRIASIAN	TITHONIAN KIMMERIDGIAN				TOARCIAN	PLIENSBACHIAN	SINEMURIAN		~	NORIAN	~2	CARNIAN	LADINIAN ~2 ANISIAN ~2	
Ö	POCH	ATE					AHLY					ATE DDLE			ARLY			LATE			IDDLE		ARLY	
S S								<u>_</u> רר															2	
Ξ	ЧШОИ ≺Ω	<u>8</u> 15 5				<u> </u>		JU VL					GES		УТІЯА. С		9AA			50	v c			
	MAGNET POLARIT HIST ANOM	8 8 8	8 8		2	5		M1 M3 M5	M10 M12 M12	M16 M18 M20	M22	M29												
	AGE (Ma)	02	8	G	B ş		120	130	6 6 1111		150	160		110	180	190			210	220	080		240	250
	olCKS (Ma)	-0.012 -1.8 -2.58	- 3.600	- 7.246	- 11.63	- 13.82 - 15.97	- 20.44	- 23.03		- 27.82		. 33.9		- 37.8	41.2		. 47.8			- 56.0	0	2.62	0.10	. 66.0
ENOZOIC	AGE	CALABRIAN GELASIAN	ZANCLEAN	TORTONIAN	SERRAVALLIAN	LANGHIAN	BURDIGALIAN	AQUITANIAN	CHATTIAN		RUPELIAN		PRIABONIAN	BARTONIAN	BARTONIAN		LUTETIAN		YPRESIAN		THANETIAN	SELANDIAN	DANIAN	
	D EPOCH	R-HOLOCENE*							OLIGOCENE					EOCENE						BALEOCENE				
Ö	PERIO								<u>U</u>	AITA∃T PAI FOGENE														
	AGNETIC MOM. ANOM.	2 C2	34 C2A 3 C3 36	4 C3 4 C4 54	2 C2	5A C5A 5B C5B 5B C5B	5D C5D 5E C5D 6 C6	6A C6A 6B C6B 6C C6C	7A C7 7A C7A 8 C8	9 C9 10 C10	11 C11 12 C12 C12	13 C13	15 C15 16 C16 17	18 C17 C17 C17 C18	19 C19	C20	21 C21	22 C22	23 C23 24	C24	25 C25 26	C26	27 C27 28 C28	29 C29
	AGE ^{M,} (Ma) _{⊟≦⊺}	1.11			₽ ₽	<u>1</u> 1 1			55	∎,Ⅲ,	000	╷┩	35	 ;	04 	45		20		55	¶,¶	I	ļ 	65 -

Walker, J.D., Geissman, J.W., Bowring, S.A., and Babcock, L.E., compilers, 2018, Geologic Time Scale v. 5.0: Geological Society of America, https://doi.org/10.1130/2018.CTS005R3C. @2018 The Geological Society of America The Pleistocene is divided into four ages, but only two are shown here. What is shown as Calabrian three ages—Calabrian from 1.80 to 0.781 Ma, Middle from 0.781 to 0.126 Ma, and Late from 0.126 to 0.0117 Ma.

Previous versions of the time scale and previously published papers about the time scale and its evolution are posted to http://www.geosociety.org/timescale

THE GEOLOGICAL SOCIETY OF AMERICA®

atmosphere condenses to form the

first oceans.

Increased oxygen levels allow animals to develop shells and quickly diversify.

Geologic Event Student Cards 1 of 4

temperatures were 9°F to 18°F

cooler than today.

Mammals evolve from egg-laying reptiles. The earliest mammals were small and covered in fur.

First hominids

Human-like apes evolve and begin to walk on two legs.

Glaciers retreat

Glaciers extend across central Indiana before retreating to the north. The melting ice forms streams that carve valleys into the bedrock.

Geologic Event Student Cards 3 of 4

Megafauna extinction

Ice Age mammals go extinct from climate Mastodons, mammoths, and other large change and human predation.