
PATTERNS OF TRANSFORMATION IN
SEVENTEENTH-CENTURY MECHANICS'

Introduction

The seventeenth century witnessed striking transformations in the science
of mechanics: whereas Renaissance authors of the previous century were
primarily concemed with restoring and extending the achievements of
Antiquity, following largely in the same track, seventeenth-century prac-
titioners brought meehanics to radically new domains, such as the
mathematical investigation of motion in its many manifestations. I have
recently argued that the objects or devices employed in the seventeenth
century are a key tool for documenting and investigating such transfor-
mations in a way that reflects the contemporary practice of mathematicians
and natural philosophers: levers, inclined planes, pendulums, springs, and
strings were employed in a variety of fashions, both practical and theoret-
ical, to open new areas of research and conceptualize difficult problems.2

In this essay I wish to extend and refine my earlier reflections by
identifying some pattems of transformation in this extraordinarily rich
and complex area, studying similarities and differences in the creative and
original methods employed by practitioners in exploring new domains.
Such pattems are potentially fertile territory for bridging historical and
philosophical themes having to do with research practices on the one
hand, and methodological and cognitive aspects on the other.3

I have identified three types of transformations. My first set of
examples can be characterized as "unmasking," namely the reeognition
that apparently complex and elaborate objects or deviees can be shown to
consist of simple, known ones in disguise, as in a metaphorical removal
of a veil or a mask. In these cases simple visual inspection—at times with
minimalist interventions—enabled the reduction of several seemingly in-
tractable cases to established ones. The term "unmasking" captures the
minimal intervention required in these cases.
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The second set of examples considers cases which were not so straight-
forward, but rather required some degree of intervention and elaboration:
the issue was not simply to point to a different way of looking at an object
by metaphorically removing a veil or a mask, but to perform a series of
operations—in line with my characterization of thinking with objects, either
mentally or experimentally, with thought and real experiments—leading from
one object or device to another. In this case I use the term "morphing" to
capture these creative transformations. Whereas the process of unmasking
appears better defined, the cases of morphing we shall encounter consti-
tute a more varied class and involve a broad range of procedures.

The third and last set includes transformations involving the removal
of material constraints through a process of mental abstraction or "dema-
terialization": the same proportions or relations valid for the constrained
case were supposed to remain valid also in the unconstrained one. Such
cases signal the transformation of mechanics from a science of machines
to a more abstract discipline based on abstract principles and laws. At the
end I shall attempt some preliminary conclusions stimulated by some
questions for further research. While neither my previous work nor the
present essay pretend to be exhaustive, I hope to have provided a suffi-
ciently broad analysis to grasp some of the main trends following which
mechanics was transformed. If my work were to stimulate further histor-
ical and philosophical refiections in this area, one of its aims would have
been fulfilled.''

1. Unmasking

Although he was by no means the first to try to account for more
complex devices in terms of the balance, Guidobaldo del Monte occupies
a special position in the late sixteenth century for the rigor and commit-
ment with which he pursued the program of "reducing" all simple
machines to the lever. The verb "reducere" was used at the time in
Federico Commandino's translation of Pappus of Alexandria and
consisted in showing through a geometrical diagram that a simple
machine amounted to a lever in different garb. Since Archimedes had es-
tablished the doctrine of the lever in rigorous axiomatic form in On the
equilibrium of planes, by adopting this approach del Monte sought to
extend in unproblematic fashion this area of mechanics to all simple
machines, a task he undertook in the 1577 Mechanicorum liber. An illus-
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trative example of his approach can be found in the case of the winch,
which del Monte showed to be a lever with bent arms. A rope is wrapped
around the cylinder AB so that by tuming the handles H, F, N, etc., weight
K is raised (figure 1). The force on the handles is represented by the
attaehed weights G or M. Here del Monte identifies the arms of the lever
as the radii CF and CB, C being the fulcmm. By pushing on F, N, etc., we
can raise the weight K with a smaller weight M, albeit more slowly than
by pulling it directly. The lever as seen by del Monte has disjointed arms,
namely CB is always parallel to the horizon, whereas CF may rotate
around C. Notice that even in this simple case the identification of the
lever occurs not in the actual material device but in its geometrical repre-
sentation, shown in cross section.^

Figure 1: Guidobaldo del Monte, winch or wheel and axle as a lever

Other mathematicians eagerly adopted this approach deployed—
though not invented—by del Monte and employed it in a variety of areas.
For example, Galileo's new science of the resistance of materials, which
he put forward in the 1638 Discorsi intorno a due nuove scienze, relies on
the identification of a beam or cantilever as a lever with bent arms: the
stmctural similarity with the case of del Monte's winch is apparent, in that
here too a seemingly complex object is shown to be a lever in disguise.
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Galileo tried to determine
the resistance of a beam
ABCD (see figure 2) in-
fixed at right angles in a
wall, or cantilever, by means
of the lever. B is its fulcrum,
BC one of its arms, BA the
other at right angles to it.
The moment of the weight
H in C is counterbalanced by
the moment of the resistance
to breaking of the beam,
proportional to the number
of fibers in its base or to the
area of the cross section.
Since the fibers are equally
spaced, they work as if
they were all in the middle
point of AB, by analogy
with a system of weights.
Thus in conclusion the resistance to breaking is as the cross section times
half the height. The fact that one of the arms of the lever is actually per-
pendicular to the horizon is peculiar: Galileo had to argue that the role of
the weights on the left side is taken by the fibers of the beam. Thus,
although in response to a request for clarifications from Giovanni Battista
Baliani he argued that everything occurs as in the lever, there were also some
subtle differences that readers at the time found confusing and pointed out.̂

There is no doubt in my mind that Galileo wished to proceed along
similar lines in other areas too, such as the science of motion. However,
while at Padua if not before, he realized that he needed different princi-
ples and stmggled for the rest of his life to give the science of motion a
secure foundation. He relied on thought and real experiments in order to
justify his postulate, and at a later stage he offered a proof based on me-
chanical principles. Within the science of motion, however, I believe that
he followed the process of "unmasking" in the transition from falling to
projected bodies: Galileo showed that the violent motion of a projectile in
a parabolic path concealed the natural motion of a falling body, to which
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a horizontal projection was added. Lurking inside the parabola was the
familiar odd-number mle of free fall, which could be revealed by a rather
straightforward process related to the drawing of the parabola. Moreover,
as Galileo had explained at the end of the second day of the Discorsi,
parabolas can be drawn by inked balls rolled on an inclined plane, thus the
material apparatus leads directly to the geometrical diagram. In this way
projectile motion appeared as a variant of free fall, since both belonged to
the same category. This achievement was of extraordinary significance:
whereas traditionally natural and violent motions were considered to be
different in nature, Galileo had shown them to be variants of each other.
This example is quite significant in my study in that it shows that the
process of "unmasking" extended to other areas besides the lever: once
new branches of mechanics were established through whatever means,
"unmasking" provided a secure way to extend a result to a new domain
even if it could not be drawn back to the lever. Notice, however, that in
this case the process of unmasking was not immediate, one did not just
"see" a falling body: rather, its nature was recognized by a simple mathe-
matical property, the odd-number mle. In figure 3, Galileo shows
uniformly accelerated motion bogln lurking inside the trajectory bijh of a
projectile, where bo, og, gl. In, are as 1, 3, 5, 7. The horizontal line ab rep-
resents a plane or line supporting the body, but at b the support ends and
the body begins to fall. The prolongation of ab, bcde represents the flow
of time. Galileo can switch from a spatial representation to a graph
involving time because in uniform motion the distances are as the times.^

e cl c l> ei

3
£

Figure 3: Galileo, parabolic motion and free fall
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Whilst Galileo had shown that there was no difference in kind between
falling and projected bodies, it was Newton who showed that there was no
difference in kind between projected and orbiting bodies. His diagram of

a projectile fired from the
top of a mountain with in-
creasing power, until it
enters into orbit, comple-
ments and extends Galileo's
diagram we have just seen.
In figure 4 projectiles shot
from a high mountain V
fall at increasingly larger
distances D, E, F, G. If the
initial speed is sufficiently
high, the projectile be-
comes an orbiting body.
Objects that Galileo had
seen as different in kind,
such as projectiles and or-
biting bodies, were shown
by Newton to be variants
of each other. Newton,
however, never publishedFii?u/« 4; Newton, orbiting bodies and projectiles

this diagram, which appeared only in a posthumous 1728 edition of an
earlier draft of his work with didactic purposes. The System of the World.
This episode highlights that by the end of the seventeenth century proofs
were provided through different means involving more elaborate mathe-
matical tools. In this case, however, the identification appears slightly
more elaborate than the simple unmasking, in that it is necessary to draw
a number of auxiliary trajectories showing the desired result through a
process akin to a thought experiment. Thus this case, while complement-
ing the previous one, points to the need for more powerful tools involving a
more active intervention than simple displaying.**

Other cases of "unmasking" concem river flow, which could be seen
as analogous to a body on an inclined plane, or altematively to a pierced
cistem, just to mention one example. My aim here is not completeness,
however, but rather the characterization of a method of practicing mechanics.'
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2. Morphing

The approach of "unmasking" had the advantage of appearing quite
rigorous and unproblematic. On the other hand, as we have seen for
Galileo's transition from statics or equilibrium to motion, it was rather
rigid and could not be applied to many cases, thus rendering it not very
effective and versatile. For example, following Pappus, del Monte tried to
apply it to solve the problem of the
equilibrium conditions for a spherical
body on an inclined plane, though
his solution appeared problematic.
When Galileo tackled the same
problem, he wished to adopt the
same approach, by unmasking a
lever However, matters turned out
to be more complex and he had to
draw an auxiliary portion of the
diagram in order to attain his
result: the issue was not simply one
of unmasking, but involved con-
structing a balance with bent arms
that was not originally there and
reasoning on the peculiar equilibri-
um conditions of a body on the

/^—X
e

A

t
: Galileo, inclined plane and balance

bent arm of the balance perpendicular to the inclined plane. In this case
the notion of "morphing" captures better the slightly more elaborate pro-
cedures than those involved in mere "unmasking," though there seems to
be a smooth transition between these two processes. In figure 5, Galileo
argued that the balance is in equilibrium in the initial position cad. If one
arm is moved to 5 or r, the body in 5 or r is not allowed to move along ef
as when it was in d, but rather when in s it would move initially along gh,
and when in r along tn. The body at r or 5 exerts less force to descend and
this decrease can be determined by means of the perpendicular to cad. A
body in s, for example, would act as if it were at a distance ap from the
fulcrum in a. The body would descend along e/'more readily than along
gh and along gh more readily than along tn, in the same ratio as it is
heavier at d than at s and at 5 than at r. On the basis of simple geometry
joined with his views about motion and force, Galileo could conclude that
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the same heavy body would de-
scend vertically with greater force
than on an inclined plane in pro-
portion as the length of the incline is
to the height of the perpendicular.'

Another instance of "morph-
ing" involves Galileo and his
disciple Benedetto Castelli, who
made of the motion of fluids a key
area of his research within the
Galileo School. In his 1612
Discorso on bodies in water,
Galileo discussed the equilibrium
of water in a siphon: this case could
be seen as an example of morphing
in its own right, in that Galileo
argued that a siphon is nothing but
a balance in disguise. The process
of recognition, however, involved
something more than mere un-
masking. In figure 6, water in the
two containers EIDF and ICAB is
in equilibrium if it is at the same ^^sure 6: Galileo's siphon
level, regardless of their cross-section. According to Galileo, the system works
like a balance wherein a small motion of the water in the large container,
to QO for example, makes the water in the thin container rise in the same
time from L to AB. The speeds are inversely as the cross sections, but
since the cross sections are as the weights in GD and LC, the speeds are
inversely as the weights, just as in the balance. Therefore the different
speeds compensate for the different weights and the moments are equal."

I would like to use Galileo's siphon to tackle another case, that of
water flowing in a river. Although Castelli did not actually refer to
Galileo's example, I am quite convinced that the similarity between the
two cases warrants my discussion of them together, especially because
Castelli was heavily involved in the debates about buoyancy from the very
beginning of the dispute with the Aristotelians and the 1612 Discorso, In
his 1628 treatise Delia misura dell'acque correnti, Castelli argued that
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since water is not com-
pressible, the quantity of
water flowing through
two cross sections A and
B of the same river in a
steady state must be the
same (figure 7): therefore
the speeds of the water

Figure 7: Castelli's river through the two croSS
sections are inversely as the cross sections themselves. It is easy to see
that Castelli's river is a straightened version of Galileo's siphon: in both
cases the same relation holds. This case is especially interesting in that it
involves a shift from equilibrium to motion.'2 :

Yet another instance involving the science of waters is the efflux
problem from a pierced cistem, studied by Evangelista Torricelli, who
took over as mathematician—though not philoso-
pher—to the Grand Duke of Tuscany on Galileo's
death. Torricelli wished to determine the speed
with which water flows out of the hole at the base
of the container, a problem initially mentioned by
Castelli in his book. At first sight the solution does
not look straightforward or easy to determine: more-
over, speeds cannot be easily measured. Torricelli,
however, managed to conceptualize the problem
in a different fashion through an experiment and the
application of a well-known property. He directed
the jet upwards and found empirically that it reached
very nearly to the height of the water inside the
container. He attributed the small discrepancy to
friction. Further, it is a well-known property of pro-
jectile motion that the speed depends only on the
height, speeds are the same at the same heights:
hence the speeds of the water spurting from the
container and of the falling jet at the same level

Figure 8: Torricelli's
pierced cistem

must be the same. By seeing the water jet as a projectile and experimen-
tally determining the height it reaches, Torricelli was able to morph the
problem of efflux from a pierced container to one of projectile motion.
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which he could solve. More specifically (see figure 8), he arranged for the
water jet squirting out at B to be projected upwards and showed that it
almost reached the level AD of the water in the tank. Since in falling to E
after having reached its maximum height C the jet goes through the same
degrees of speed as in rising, at E the water must have the same speed it
had in B when coming out of the orifice; hence the water can be imagined
to fall inside the container almost as if it were a body falling in air and its
speed in B is as the square root of the height of the water in the vessel.'^

The last example I consider in this section can be characterized as a
boundary case. In the 1673 Horologium oscillatorium, Huygens estab-
lished that cycloidal cheeks, forcing the bob to move along a cycloidal
path, render oscillations isochronous. It was only after the treatise was
published, apparently, that Huygens inquired about exactly which
property of the cycloid makes oscillations isochronous: what he found

Figure 9: Huygens's cycloidal pendulum

was that in each point of the bob's cycloidal path, the force is proportion-
al to the displacement. In figure 9, for a body placed at any point of an
inverted cycloid ABC, the component of its weight BKG tangent to the
curve is proportional to the length of the cycloidal arc BIA from the
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cycloidal vertex to the body. Of course, this is the same relation that
applies to a vibrating spring, one that has since become known as Hooke's
law. Thus in a sense Huygens was able to morph a cyeloidal pendulum
into a spring. This process occurred through higher mathematies rather
than purely visual tools or simple experiments: the geometrical diagram
by itself yielded no visually obvious solution. Thus this case marks a sig-
nificant point of transition towards the eighteenth century, when higher
mathematics, especially analysis and differential equations, took center
stage and replaced a more intuitive and geometrical approach

3. Dematerialization

An additional category of transformations with a notable process of
abstraction involves the removal of material constraints. In some
instances relations between variables were established relying on material
supports: for example, in the balance, the equilibrium conditions involved
the combination of the weights of the bodies and their distances from the
fulcmm. The resulting proposition, well known since Antiquity, was that
the balance is in equilibrium if the weights are inversely as those
distances. Altematively, following the pseudo-Aristotelian Quaestiones
mechanicae, if one imagined the balance to rotate around its fulcmm, the
equilibrium conditions could be formulated by stating that the weights are
inversely as their speeds, which are proportional to the distances. In this
way Galileo introduced the notion of momento delle velocità, or moment
of the speeds, a magnitude resulting from the weights and speeds taken
conjointly: thus the balance is in equilibrium if the moments are equal."

A number of seventeenth-century natural philosophers and mathe-
maticians, such as Isaac Beeckman, Christiaan Huygens, and Christopher
Wren, took the balance as a springboard to investigate the collision of
bodies through the process of "dematerialization." At first this strategy
may seem peculiar, since two bodies in equilibrium on a balance seem
conceptually and visually quite different from two colliding bodies. This
surprising transformation was attained by employing the analogy of
machines and the magnitude resulting from the combination of weight and
speed. Beeckman considered the collision between two equal bodies, one
of which is at rest, and argued that they would move together after the
impact with half the speed of the impinging body, as in simple machines,
where the same force raises double a weight with half the speed of a single
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weight. In the case of bodies whose speeds are inversely as their weights,
Beeckman argued that the bodies would come to rest, explaining that his
view was inspired by the balance: "Sic etiam ratiocinandum de bilance."
It seems that the idea of a competition between two bodies served as a
conceptual tool whether the bodies were joined by a material constraint or
whether they were colliding. Visually, too, both Huygens and Christopher
Wren adopted a style of representation for colliding bodies closely linked
to the balance, with the two bodies R and S at the extremes and their
center of gravity a in the middle (see figure 10 from Wren).'^

Ioxqtialia.

Figure 10: Huygens and Wren on impact and the balance

A second instance involves a development of Torricelli's principle.
In the last few years of Galileo's life, Torricelli was close to his mentor
and worked with him and Vincenzo Viviani on systematizing and
extending the new science of motion. Torricelli was especially concerned
with providing more solid axiomatic foundations to Galileo's construc-
tion: in his 1644 De motu he posited a new postulate stating that two
connected heavy bodies cannot move by themselves unless their common
center of gravity descends. He illustrated his postulate with examples of
simple machines such as balances, pulleys, and inclined planes. Two
connected bodies could be seen as one single body and it seemed legiti-
mate and intuitive to claim that that body could not move by itself unless
its center of gravity descended.'^ In his study of impact, however, Huygens
adopted a variant of Torricelli's principle, stating that converting the speeds
of colliding bodies from horizontal to vertical, their common center of
gravity cannot rise as a result of the impact. Given that pendulums were
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the privileged experimental devices to investigate collision, the conver-
sion of horizontal speeds to the vertical appeared quite natural. Moreover,
there existed an established tradition in mechanics of mentally tying and
rescinding falling bodies in order to study the role of weight on the speed
of fall: both Giovanni Battista Benedetti and young Galileo had recourse
to such thought experiments. The editors of Huygens's Oeuvres argue that
this way of reasoning led Huygens to the conservation of vw viva for hard
bodies. In this case, too, we witness interesting transformations: Torricel-
li considered the possible descent of bodies; Huygens wished to deny their
ability to rise as a result of impact. Moreover, Torricelli's system was con-
strained, since he explicitly stated that his bodies were connected. By
contrast, Huygens rescinded that connection and considered the case of
two colliding bodies not connected to each other's

Yet another instance of dematerialization occurred in the debates at the
Royal Society on the conceptualization of celestial motions, especially
those of the Earth and Moon. John Wallis and Robert Hooke argued that the
Earth and Moon were connected, though it was unclear how. The issue
had arisen from Wallis's attempt to refine Galileo's theory of tides by con-
sidering not simply the Earth alone, but rather the Earth-Moon system
rotating around the common center of gravity. Following the previous example
of astronomer Jeremiah Horrocks, Hooke eoneeptualized orbital motion
with the help of a conical pendulum, whose bob would represent the orbiting
body. He argued that the analogy was not perfect, because in the case of
the conical pendulum the retaining force increased with the displacement,
whereas the retaining force of the Sun was likely to decrease with distance.
We witness here an especially nice example in which the pendulum is used
to establish an analogy but also differences. The interplay between
material constraint and orbital motion worked in other ways: to defend
Wallis's claims, Hooke attached a smaller pendulum to the bob of the large
one, in order to illustrate the motions of the Earth and Moon. Presumably
the thread of the additional smaller pendulum represented the force con-
necting the Earth and the Moon, although the analogy involving the
common center of gravity appears less than perfect." In this case, too, it
appears that the reliance on a constrained system like the pendulum in
order to account for an unconstrained one arouses suspieions and debates.

The next case I wish to consider ties together the most common and
fundamental device and the most abstract one: the lever was used by
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several mathematicians to study celestial motions. Johannes Kepler talked
of planets being pushed by the rays of the sun, acting as a lever; Giovanni
Alfonso Borelli also identified a radial component in orbital motion and
referred to several material devices, including the lever, to visualize and
conceptualize orbital motion; lastly, Gottfried Wilhelm Leibniz imagined
planets to be pushed by a vortex around the sun and to move at the same
time in radial motion along a mler or a rigid rotating straight line. While
the circular motion had a material support in the form of a rotating vortex,
the rotating mler was entirely fictitious; still, it enabled Leibniz to write
equations of motion along the radius and to conceive of the planet as
subjected to an inward and an
outward tendency counterbal-
ancing one another along that
radius. Thus in this case, too, a
material constraint was used as
part of the conceptual scaffold-
ing and then discarded; the out-
come was a study of orbital
motion based on the combina-
tion of a circular and radial
motion. In figure 11, the planet
is carried by the rotating radius

0,M, O3M and at the
same time moves toward to sun
at 0.20

A particularly interesting
instance developing and ex-
tending the case of collision
occurs in Newton's Principia
mathematica, in the discussion
of the third law. The law states: '̂
"To any action there is always
an opposite and equal reaction;
in other words, the actions of
two bodies upon each other are
always equal and always opposite in direction." A corollary to this law
states: "The common center of gravity of two or more bodies does not

Figure It. Leibniz's radial motion
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change its state whether of motion or of rest as a result of the actions of
the bodies upon one another." It is easy to recognize here the case of
collision among bodies that we have discussed above; indeed, Newton
proved the third law "insofar as it relates to impacts and reflections" with
pendulum experiments. However, Newton's law and corollary were more
general: "This law is vahd also for attractions, as will be proved in the
next scholium." In the scholium Newton dealt with the case of attractions
by means of real and thought experiments. The former consisted in
placing pieces of lodestone and iron in vessels floating in water, and
showing that they will join and stay at rest, without one driving the other
forward: thus in this case Newton relied on magnetism to prove his point.
The latter involved a thought-experiment: Newton imagined slicing the
Earth into two unequal parts. Once again, if the third law did not hold and
they attracted each other unequally, the Earth would yield to the greater
weight and move in that direction indefinitely. This result was applied to
bodies attracting each other at a distance. Thus while Beeckman, Huygens,
and Wren relied on dematerialization in moving from the balance to
collision, Newton moved one step further in considering the third law of
motion and the conservation of the state of rest or uniform rectilinear
motion of the center of gravity for a system of bodies interacting with or
without collisions, thus without any contact at all, as in a case of "dema-
terialization squared."

Concluding remarks

This study has provided a fine-grained analysis of some of the trans-
formations of mechanics in the seventeenth century. The cases we have
discussed instantiate the processes of unmasking, morphing, and demate-
rialization, providing concrete examples of each and offering at the same
time a more detailed understanding of those transformations. Seen together,
the processes I have identified strengthen and refine the claim that objects
provide a useful perspective from which to study the transformations of
mechanics. Moreover, they highlight the intersection between cognitive
and methodological aspects on the one side, and historical ones on the other.

The lever—or balance—was a common starting point in many cases.
Among those discussed here, the winch, the beam, the siphon, the inclined
plane, colliding bodies, and orbiting bodies were all tackled with concep-
tual tools derived from it. At the receiving end, orbiting bodies were a
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common object of study starting from projectiles, the conical pendulum,
and the lever.

The cases we have studied present a broad spectmm of approaches
raising a number of historically and philosophically relevant issues: While
some transformations were rather straightforward, others look sufficiently
daring as to raise questions: in which cases were they seen as problemat-
ic? What was the role of geometrical diagrams and of mathematics more
broadly in the three categories? Lastly, can one provide a more detailed
periodization and conceptualization of the transfonnations of seventeenth-
century mechanics by identifying pattems of those transformations?

Space prevents me from addressing these questions fully here;
however, I shall gesture toward some answers while leaving mueh for
further study. Although it may prove hard to identify contemporary per-
ceptions, some readers' ease or unease with certain transformations
suggests that they were perceived as belonging to different groups. For
example, Baliani failed to see a lever in Galileo's beam; since the French
Minim Marin Mersenne questioned Torricelli's treatment of the efflux
problem, arguing that the first few drops of water exiting the pierced
cistem had not fallen from the water surface, he presumably saw Torri-
celli's procedure as questionable and different from del Monte's reduction
of the winch to the lever. The usage of the conical pendulum to study
orbital motion was questioned at the Royal Society, and Newton chal-
lenged Leibniz's approach to orbital motion based on a rotating mler as
leading to inconsistencies.

The role of mathematics in the three different cases shows quite in-
teresting pattems as well. Geometrical diagrams were cmcial to unmasking
and morphing, though in the case of cycloidal motion their role was sup-
plemented by a heavy dose of higher mathematics. The very processes of
unmasking and morphing were visual and relied on seeing the transformation
of one object into another. Overall, géométrie diagrams appear less helpful
in the process of dematerialization, which calls for greater abstraction.

Lastly, overall cases of unmasking and morphing seem to have been
used from an earlier phase already with del Monte and young Galileo,
whereas dematerialization was employed at a slightly later stage. All the
pattems that I have identified, however, were applied with increasing so-
phistication throughout the seventeenth century. The usage of Torricelli's
principle in the study of collision, the identification of common properties
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in cycloidal and elastic oscillations, and Newton's as well as Leibniz's
analyses of orbital motion were not the outcome of a merely visual
analysis. More powerful and abstract techniques were becoming increas-
ingly significant in the course of the century, moving away from a mostly
geometrical and visual age. For this reason, I have argued that Huygens's
reliance on higher mathematics in the study of cycloidal and harmonic os-
cillations in 1675 and Newton's failure to publish the diagram showing
the identity of projectiles and orbiting bodies—an identity that he estab-
lished through different means—mark a new way to tackle mechanical
problems, one in which more abstract mathematical methods became central.

Domenico Bertoloni Meli
Indiana University, Bloomington
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