Practicing Oblivious Access on Cloud Storage: the Gap,
the Fallacy, and the New Way Forward

Vincent Bindschaedler!, Muhammad Naveed!, Xiaorui Pan?, XiaoFeng Wang?, and Yan Huang?

University of lllinois at Urbana-Champaign

2Indiana University, Bloomington

{bindsch2,naveed2}@illinois.edu

{xiaopan,xw7,yh33}@indiana.edu

www.oblivious-storage.com

ABSTRACT

To understand the gap between theory and practice for obliv-
ious cloud storage, we experimentally evaluate four repre-
sentative Oblivious RAM (ORAM) designs on Amazon S3.
We replay realistic application traces to these ORAMs in
order to understand whether they can meet the demands of
various real applications using cloud storage as a backend.
We find that metrics traditionally used in the ORAM litera-
ture, e.g., bandwidth overhead, fail to capture the practical
needs of those applications. With a new understanding of
the desirable properties, relevant metrics, and observations
about the cloud services and their applications, we propose
CURIOUS, a new modular partition-based ORAM frame-
work, and show experimentally that it is thus far the most
promising approach.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information
Systems]: Security and Protection

General Terms

Security, Measurement, Experimentation, Performance, Al-
gorithms

Keywords

Oblivious Cloud Storage; Oblivious RAM; ORAM; Access
Pattern

1. INTRODUCTION

Oblivious Random Access Memory (ORAM) is a secu-
rity mechanism to hide data access patterns. This concept
was proposed decades ago, for the purpose of hiding the
way a program accesses memory to defend against software
reverse-engineering [5]. Recently, the growing popularity of
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

CCS’15, October 12-16, 2015, Denver, Colorado, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3832-5/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2810103.2813649.

cloud computing has reinvigorated the research on the idea,
which can potentially be applied to secure online storage sys-
tems that are increasingly being used to host personal or or-
ganizational data of critical importance (e.g., financial docu-
ments, health-care data, location information, etc.). Privacy
concerns for those systems come not only from explicit data
exposure, which could be addressed through encryption, but
from possible side-channel leaks in which an unauthorized
party (including the cloud provider) infers sensitive infor-
mation from the pattern in which data is accessed. To miti-
gate this threat, numerous ORAM algorithms [16, 9, 25, 24,
22] have been proposed, particularly to make this oblivious
access technique more applicable to the cloud.

Rethinking ORAM on the cloud. Despite significant
progress made on ORAM designs, when it comes to the cloud
application, it is still unclear whether this theoretic concept
is indeed moving towards the practical end. A fundamen-
tal question one may ask is: Whether the security model
and performance metrics of today’s ORAM designs are in
line with the constraints and demands of real-world cloud
services and applications? As mentioned earlier, the con-
cept of ORAM originates from memory protection, which
does not take into account unique properties of the modern
cloud. Examples include its elastic resource allocation and
asynchronously running applications, which all affect the se-
curity assurance by the ORAM primitive (Section 4.2, [20],
and [13]). On the performance front, conventional ORAM
algorithms seek to minimize the client-side storage (e.g., log-
arithmic of the outsourced storage, or even constant [19]),
and the data-access bandwidth. This is increasingly out of
the touch with the reality of modern computing. Indeed,
storage has become increasingly cheaper, and even a smart-
phone today can easily afford gigabytes of space for sup-
porting security-critical services. It is conceivable that an
(otherwise-preferable) ORAM scheme requiring linear local
storage works well in practice, as long as the outsourcing ra-
tio is reasonably high (e.g., 1 TB on the cloud vs. 1 GB on
a mobile device). Given such misalignments, together with
the technical challenges in making ORAM efficient, we may
further ask: How close the current ORAM techniques are to
offering any practical support for cloud applications? Are
we on the right track to narrow this gap?

These questions can only be answered by a systematic
study of the operations of state-of-the-art ORAM schemes
over real-world cloud storage systems. This is a challenging

{bindsch2,naveed2}@illinois.edu
{xiaopan,xw7,yh33}@indiana.edu
http://oblivious-storage.com

task. First, most existing ORAM approaches do not have
prototypes suitable for running on the cloud. Realizing the-
oretical ORAM constructions on existing cloud storage plat-
form requires additional careful examination and engineer-
ing efforts. Take Path ORAM [22] as an example to see the
gap, although the full protocol can be described by merely
16 pseudo instructions, a single instruction that reads data
blocks from a path needs tens of lines of Java code for care-
fully issuing asynchronous requests to the cloud. Second,
running a real cloud application on top of ORAM in prac-
tice requires changes to all its storage access instructions
(see Section 3.1), which is complicated due to the mismatch
in the storage API designs and the low availability of the
source code of existing ORAM implementations. Actually,
never before has any ORAM implementation been tested
on a commercial cloud storage system, not to mention any
attempt to understand its effectiveness in supporting real-
world cloud applications.

Understanding the gap. Understanding the gap between
the idea of ORAM and today’s cloud reality is the only way
to keep the research on the right track. Since it is un-
likely that the cloud architecture, implementation and busi-
ness model will be changed to suit the ORAM designs, we
argue it is important to adjust ORAM designs to better
fit it with the cloud. To this end, we built cloud-capable
versions of four most representative ORAM algorithms, in-
cluding a layered ORAM [7], a tree-based ORAM (PathO-
RAM [22]), a partition-based ORAM (ObliviStore [20]) and
a large-message ORAM [8]'. These implementations were
evaluated against realistic cloud applications and workloads
using a unique methodology. More specifically, we connected
Filebench [18], a popular storage benchmark, to Amazon
S3, and ran the tool to produce a large amount of diverse
storage-access workloads. Such workloads realistically de-
scribe the real-world operations of a variety of cloud-related
services and applications, e.g., web servers, file servers, etc.
Their traffic traces were captured on the cloud end and then
replayed to our ORAM implementations, which were also
connected to S3.

We found that today’s ORAM designs are still far from
practical deployment. For example, for some task, even the
most efficient design, ObliviStore, took 181 seconds to han-
dle what was accomplished within 38.5 seconds in the ab-
sence of the ORAM, generating more than 17 times of ad-
ditional traffic and costing its user 68 times more in terms
of monetary expense. For the most optimistic task they
could handle, other approaches incurred between 3.3 and
32.8 times of performance slowdown and between 53 and 795
times extra fees for renting the Amazon service. Most im-
portantly, our research brought to light significant and sur-
prising misalignments between the metrics used to evaluate
an ORAM scheme and those to evaluate a cloud application.
Traditional metrics for evaluating ORAM (e.g., bandwidth)
do not fully reflect its ability to support cloud applications.
The mismatch can be explained with several overlooked fea-
tures of cloud services and overlooked application require-
ments. For instance, compare uploading with downloading
the same amount of data, uploading is much slower (1.5 to
1.8 times for S3) than downloading; and it also costs more

1These systems were all developed by strictly following their pub-
licly available descriptions and leveraging existing code when possible
(Section 3.2).

money (12.5 times for S3). In addition, data access pat-
terns can also affect the performance and monetary cost in
substantial ways. Missing these points, as do all existing
approaches, a conventionally appealing ORAM construction
may turn out to be unusable in cloud environment. Further,
many ORAM designs (e.g., layered and tree-based family of
ORAMs) assumes a sequential requests model, which makes
them ill-suited for a majority of modern cloud applications
that would be unusable without concurrent data access (Sec-
tion 4.2). Additionally, we found that some applications can-
not be supported by synchronous ORAM schemes (existing
or future), because they also need to manipulate variable-
size objects (recall all existing ORAMSs assume fixed-size
blocks). Last, the eviction process of many popular ORAMs
are incompatible with some applications such as back-up ser-
vices because certain fresh data is cached on the client side
and if the client crashes, it gets lost.

Although some of these missing design metrics have been
mentioned by some prior studies (such as elasticity in [13]
and asynchronicity in [20]), our research shows that adding
them to the ORAM design is more difficult than thought:
for example, asynchronous operations have not been done
right in any existing implementation. We found the pro-
totype of ObliviStore leaking information in the presence of
multiple requests for the same data block (Section 4.2). Fur-
ther, these properties do not appear to be the primary focus
of the mainstream ORAM research. After inspecting 39 re-
search papers on this subject and the citations they receive
(Section 5.2), we found that most recent work continues to
focus on the constructions that are less likely to support
cloud applications. This finding suggests that the research
in this area could actually be moving away from one of its
major objectives, i.e., cloud storage protection.

Seeking new solutions. Based upon the understanding,
we identified a new set of metrics for evaluating ORAM
designs, focusing more on latency, monetary expense, out-
sourcing ratio, elasticity and reliability. Among all exist-
ing designs, ObliviStore, which is built on partitioning the
main ORAM into a set of smaller server-side ORAMSs, turns
out to be the most promising one. However, we found that
in addition to its privacy weakness in its implementation,
the construction is overly complicated due to some of its
specific performance optimization (e.g., background shuf-
fling). In our research, we come up with a new ORAM
design, called CURIOUS (Cloud Framework for Oblivious
Storage). CURIOUS is characterized by a set of fized-size
small ORAMs, offering a large constant outsourcing ratio,
convenience for supporting asynchronous operations and the
capability to expand and shrink its cloud-side storage. It has
been carefully built to ensure oblivious data access when
serving multiple requests concurrently, and adopt a sim-
pler eviction strategy, making it easier to implement. Also
importantly, unlike ObliviStore, which is tied to a layered
ORAM scheme [20, 21], CURIOUS allows its underlying
small, fixed-size ORAMSs to be easily replaced. As a result,
its performance will be continuously improved whenever a
new design of such a building-block ORAM is available. For
applications easily supported by ORAM, both ObliviStore
and CURIOUS perform comparably. However, for demand-
ing applications that stressed ORAM, CURIOUS signifi-
cantly outperforms ObliviStore in response time (only its
25%), despite doubling the network traffic. In all cases, CU-
RIOUS incurred lower monetary expense than (1/2 ~ 2/3

of) ObliviStore. Our design serves as a starting point for
further efforts to bring ORAM closer to its deployment for
cloud storage.

Contributions. Our contributions include:

e New understanding. We made the first attempt to evaluate
mainstream ORAM designs on the real-world cloud storage
and applications. Our study reveals not only the perfor-
mance gap between the state-of-the-art of ORAM research
and the cloud reality, but also some fundamental design re-
quirements missing in today’s ORAM constructions. Such
miscalibrations risk moving the area further away from prac-
tice, as suggested by the trend of the proposed new construc-
tions (Section 5.2). Better understanding of what needs to
be done and what should be avoided is critical for putting
the research back on the right track.

e New technique. We developed CURIOUS, a modular-
ized framework for supporting oblivious storage access on
the cloud. Compared with prior approaches, CURIOUS
is a step closer to supporting real-world applications with
oblivious cloud storage. To encourage further research, we
make the code of the CURIOUS framework available at
http://oblivious-storage.com.

2. BACKGROUND AND PRELIMINARIES
2.1 Cloud Storage

A prominent example of online cloud storage is Amazon
Simple Storage Service (S3). S3 allows customers to organize
their data into buckets, each of which has a separate name
space, holding a large number of objects such as files. An S3
user can perform five bucket operations through the Ama-
zon APIs, including get or put that downloads and uploads
objects respectively, and 1list, copy, or delete that per-
forms the functionalities of the UNIX commands Is, cp and
rm respectively. The service provider (Amazon) determines
the user’s bill based on the number and type of operations
she performed (e.g., 0.004 USD per 10K gets, 0.005 USD
per 1000 puts, lists, and copys), the amount of network
traffic (e.g., 0.09 USD per GB for up to 10 TB/month),
and the storage used (e.g., 0.03 USD per GB for the first
1 TB/month). Other popular cloud storage systems, like
Google Cloud, all have similar APIs and pricing structures.

Throughout the paper, we consider a typical way of us-
ing the cloud storage system: an application running on
the client device (e.g., the user’s in-house server, desktop,
smartphone, etc.) integrates the storage interface (i.e., the
aforementioned APIs) and utilizes the interface to operate
on its cloud-side data. For example, a mobile app could use
the interface to upload the user’s pictures onto the cloud.
Note that we do not consider the setting where both the
application and its storage sit on the same cloud, as used in
the prior research [10].

2.2 Oblivious RAM

An Oblivious RAM scheme is a trusted mechanism on a
client, which helps an application or the user access the un-
trusted cloud storage. For each read or write operation the
user wants to perform on her cloud-side data, the mecha-
nism converts it into a sequence of operations executed by
the storage server. The design of the ORAM ensures that for
any two sequences of requests (of the same length), the dis-
tributions of the resulting sequences of operations are indis-

tinguishable to the cloud storage. Existing ORAM schemes
typically fall into one of the following categories: (1) lay-
ered (also called hierarchical) [5, 25], (2) partition-based [20],
(3) tree-based [19, 22, 2, 23, 11, 17]; and (4) large-message
ORAMs [1, 8, 15].

In this paper, we consider a block to be the unit of ORAM
data that is uniquely identified by its key (i.e., a block iden-
tifier). To access a block with key z, an application sends a
request to the ORAM mechanism running on the client side.
The ORAM client then performs the operations through is-
suing a sequence of cloud storage instructions.

Representative schemes. A layered ORAM organizes n
data blocks on the storage into a hierarchical structure with
logn + 1 levels. Each level consists of a hash table, whose
size increases exponentially: the size of the table on layer ¢
doubles that on layer ¢ — 1. Typically, Cuckoo hashing [16,
9] is used to realize the hash tables. To access block z, the
ORAM client proceeds layer by layer (from the lowest layer
upwards) reading all blocks using the hashes of x as indices
(except for layers after x is found, where random dummy
blocks will be retrieved). Once the query is done, block x
is stored back into the hierarchy (in the lowest layer with
an empty entry). Periodically, all blocks in layers below and
including layer ¢ will be reshuffled and pushed into layer i+1.

A tree-based ORAM organizes the external storage as a
tree where each tree node holds a few blocks. To serve a
request to access x, the ORAM client looks up a position
map that links a block to a tree leaf. From the leaf, all
blocks on the path to the root is then retrieved to find the
block z. An eviction procedure follows that aims to save
x somewhere back in the tree. A representative tree-based
ORAM is PathORAM [22].

A partition-based ORAM divides its external storage into
m partitions, each managed separately. The client main-
tains a position map to keep track of each block’s partition,
and an eviction cache to hold the block downloaded from
the storage for a random amount of time, before re-writing
it back to a random partition. So far, only two (very simi-
lar) partition-based schemes have been proposed, which are
all based upon simplified layered ORAM (without Cuckoo
tables). A prominent example is ObliviStore [20].

A large-message scheme [8, 1, 15] maintains a cache on the
client side. The ORAM simply reads from the cache when
the requested block is there, or fetches it from the external
storage and then puts the block in the cache afterwards.
Once the cache is full, the entire external storage has to be
rebuilt through an oblivious sorting algorithm.

We do not consider schemes which require server compu-
tation such as [24, 3, 11, 4, 14], since they are not supported
in our setting.

3. ANALYSIS OF ORAM ON THE CLOUD
3.1 Methodology

At a high level, our methodology is to run a set of popu-
lar applications that utilize cloud storage (e.g., web servers,
email servers, web proxies, etc.) on the client system (in-
house server, workstation, mobile devices etc.), under re-
alistic workloads, to access their cloud-side data through
an ORAM client. The idea is to understand how the op-
erations for achieving obliviousness affect the performance
of the application, whether such impacts are in line with

http://oblivious-storage.com

what is predicted by existing metrics, and also what privacy
implications the ORAM design could have in a real cloud-
computing environment. It is important to note that we do
not consider the scenarios where cloud-side supports are pro-
vided to facilitate ORAM operations, as assumed in some
prior research [11, 24], since it is less clear whether cloud
service providers are willing to change their service model
to support ORAMs and even if so, how they are going to do
that. Without support from actual providers, it is hard to
conduct a preliminary study in that direction.

When it comes to the details, two issues must be addressed
to make the methodology work: we need to select from tens
of ORAM designs the most representative and promising
ones for evaluation, and also find a way to incorporate them
into the applications using cloud storages.

Choosing ORAM representatives. As mentioned ear-
lier, mainstream ORAM designs can be roughly classified
into four categories: layered ORAMs, tree-based ORAMs,
partition-based ORAMSs, and large-message ORAMs. We
selected a representative from each category. Specifically,
for layered ORAMs, we picked the asymptotically most effi-
cient de-amortized worst-case layered scheme [7] (which we
call LayeredORAM) that utilizes Cuckoo hashing and Ran-
domized Shell Sort. For tree-based approaches, we chose
PathORAM [22], a construction known for its efficiency and
simplicity. There are only two partition-based designs and
ObliviStore [20] is the one that was evaluated on Amazon
EC2 (not S3) and achieved a high throughput. In the large-
message ORAM category, we selected PracticalOS [8], due
to its improved performance over previous schemes in the
same category such as [1]. None of these have prototypes
suitable for running on cloud storage, so we implemented
them (Section 3.2).

We did our best to select the most representative ORAM
schemes, typically the most efficient ones (asymptotically)
in their respective categories. We believe the results of our
study at least offer new insights about how the state-of-
the-art ORAMSs could work in a real-world cloud storage
system. We emphasize that our goal is to understand the
gap between current designs and what cloud applications
require; not merely identify the best ORAM scheme.

Evaluating ORAM supports for cloud apps. To un-
derstand how well these ORAM designs are up to the task
of supporting cloud applications, we need to evaluate ap-
plications on top of the ORAM implementations. As dis-
cussed earlier, this is nontrivial due to the challenges in in-
tegrating ORAM interfaces into those applications and fur-
ther generating realistic workloads during their runtime. In
our research, we adopted a unique approach, which recorded
the communication traces between an application workload
generator and its cloud-side storage, and then replayed the
traces to our ORAM implementations.

Specifically, we used Filebench [18, 12], a popular per-
formance benchmark capable of emulating the workloads of
many complex applications (e.g., mail, web, file and database
servers), as the workload generator. In our research, we
mounted an S3 folder (i.e., a bucket) to a client system us-
ing S3FS and ran Filebench over this folder. After executing
a task, e.g., simulating a web server’s workload for ten min-
utes, we retrieved from S3 a server access log file recording
request details (including the type of operations (get, put,
etc.), the arrival time of each request, the number of bytes

1424659600, GET, bigfileset/00000001,/00000145, 51738, 51738
1424659600, GET, bigfileset/00000001,/00000140, 31558, 31558
1424659600, GET, bigfileset/00000001,/00000143, 3621, 3621
1424659600, PUT, bigfileset/00000001,/00000044, -, 227
1424659600, PUT, bigfileset,/00000001/00000142, -, 49297
1424659600, PUT, bigfileset/00000001/00000042, -, 201
1424659601, PUT, bigfileset/00000001/00000145, -, 64387
1424659601, PUT, bigfileset,/00000001/00000046, -, 6808
1424659601, GET, bigfileset/00000001,/00000148, 17139, 17139

Figure 1: Excerpt trace of the varmail filebench application. It con-
tains the following fields (in order): timestamp (UNIX format), type
of request, name of object/file requested, number of bytes read (if
get), total size (in bytes) of the object/file.

delivered etc.) Amazon received. An example trace is illus-
trated in Figure 1.

To evaluate an ORAM, we then replayed the traces to
the ORAM client that communicated across the Internet
with S3. The ORAM client kept track of the response time
for each request (which may contain multiple round-trips
between the client and S3), the amount of data exchanged,
monetary cost, and other performance data. We further
compared these measurements with a baseline client that
did not use ORAM (nor providing access pattern privacy).

Adversary model. We make the standard assumptions
made by other ORAM research: the cloud is an honest-but-
curious party; but, the client is trusted.

3.2 Optimistic Implementation

Surprisingly, we found that building those ORAM ap-
proaches was complicated by the lack of design details —
the papers [7, 20, 21] did not describe many important de-
sign details for developing working systems. To fill up the
gap, we contacted the authors and acquired the prototypes
of ObliviStore and PathORAM, which we modified to make
them work on a cloud storage system. However, since the
implementation of LayeredORAM and PracticalOS was not
available, we adopted an “optimistic” way to implement their
schemes. PracticalOS could be implemented fully from the
description. However, for LayeredORAM, we just built the
parts explicated by the paper and simplified the components
whose details are missing there (see below), so it did not
fully function as an ORAM, yet in terms of performance,
it should outperform the fully implemented version, as only
part of the overall overhead is actually measured.

LayeredORAM [7]. The paper of LayeredORAM is quite
detailed about the way the worst case performance is achieved
and the ideas behind de-amortizing the scheme. This en-
abled a faithful implementation in our cloud storage exper-
iments. However, when it comes to the concurrent Cuckoo
table rebuilding, which includes concurrent reshuffling and
the concurrent oblivious Cuckoo hash tables construction,
we found that these details were missing. Specifically, it gave
reference pointers on randomized Shell-sort [6] and the obliv-
ious hash table rebuilding, but did not explain how those
operations can be concurrently spread out over multiple re-
quests (which is needed for de-amortization). The paper
only specifies that 2b accesses have to be made “towards a re-
build” (of each layer’s Cuckoo table) for some b > 0, without
specifying what those accesses are. As a result, we could only
construct a component that “emulated” what was expected
to be done. More specifically, we performed 2b dummy ac-
cesses, i.e., b (concurrent) gets followed by b (concurrent)

puts. Because we optimistically set b = 1, our implemen-
tation can only lead to underestimation of their scheme’s
cost. Also, the paper does not give concrete values for some
critical parameters, including epoch size ¢ = O(logn), and
stash size 2slogn for some s > 1. Optimistically, we set
q =log,n, and s = 2.

PathORAM [22]. Conceptually, PathORAM is rather
simple; it can be described by merely 16 lines of pseudo-
code. The implementation, however, is more complicated.
Even with the prototype we obtained, we still made signif-
icant efforts to make it work with S3. As an example, in
the PathORAM paper [22], retrieving a path was described
in a single line of code. When performing this operation,
however, the ORAM client first needs to calculate the path
locally upon the data structure describing the tree, then
schedule the queries (for different blocks on the paths on
the S3) asynchronously and wait for their completion. In
the end, the prototype we used for our study includes over
1000 lines of code. Based on the most optimistic parame-
ter setting in the original paper [22, Table 3], we chose the
number of blocks per tree-node z = 4 and stash size s = 89.

ObliviStore [20]. Among all the schemes we tested, Oblivi-
Store is the most complex one. The complexity stems from
its attempts to support asynchronous request processing and
backgrounded shuffling and eviction. This calls for sub-
tle synchronization to avoid messing up the system’s states
(e.g., the shuffling should not be executed before all the
blocks have been read). Unfortunately, such critical details
on how to concurrently perform those operations efficiently
and securely was missing in the paper. The prototype pro-
vided by the authors utilizes two semaphores to keep some
level of synchronization between shuffling, requests process-
ing, and local memory operation. It runs a single thread
to sequentially schedule these tasks: each request or back-
ground shuffling task is put in a single queue and executed
one by one; this ensures that there are no concurrent modifi-
cations of the local state that would result in inconsistency.
Note that the tasks being scheduled can still run concur-
rently, in the sense that the system does not need to wait
for the completion of one task before invoking another. The
complexity in asynchronous and concurrent processing ac-
tually makes it more difficult to achieve obliviousness, as we
discuss in Section 4.2.

The original prototype of ObliviStore was in C#, while
PathORAM and other ORAM prototypes were built in Java.
To compare these systems in the same environment (which
was convenient for the experiment setting and data collec-
tion), we re-implemented ObliviStore in Java by strictly fol-
lowing the code provided by the authors, and just adding
the functionalities to interact with S3. Note that the per-
formance impact of the programming languages is minimum
here, because all the delays we observed in our study were
predominantly caused by communication and cloud-side op-
erations. More specifically, we observed that the client-side
processing (e.g., scheduling a request) is on the order of 1ms
or less, whereas the processing time of those requests, i.e.,
interaction with S3, is on the order of 100ms or more.

PracticalOS [8]. We fully implemented PracticalOS. The
only issue we encountered was that the authors made as-
sumptions about a few cloud APIs that S3 and other cloud-
storage services (like Google) do not actually provide. For
example, getRange was assumed in the original design to

retrieve a set of blocks with consecutive keys in one single
operation. To address this inconsistency, we had to uti-
lize the existing storage interfaces to “emulate” those APIs.
Specifically, getRange was realized with 1list and a number
of get operations performed in parallel, as suggested in [8,
Section 7]. We further enabled sending requests to the cloud
storage asynchronously, for both get and delete operations.
However, the re-shuffling process, cannot be performed con-
currently with outstanding requests, because all data blocks,
including those in the local dictionary [8], are required to be
obliviously sorted together. The paper provides construc-
tions for arbitrary ¢ > 2, where c¢ indicates the amount of
local memory being used. We chose ¢ = 2, which uses the
most memory, but has the lowest communication overhead.

4. FINDINGS

Experiment settings. Our experiments were conducted
from a Linux server on a university network. The machine
ran an ORAM client to interact with S3; the S3 buckets were
placed on the US_EAST1 Standard (North Virginia) Ama-
zon S3 region. This region has the lowest round-trip time
with the ORAM client. The bandwidth between the client
and S3 was 50 MB/s downstream and 10 MB/s upstream?.
In our experiments, we always started running an ORAM
in a warmed-up state (after O(n) requests were processed
where n is the capacity of the ORAM instance).

4.1 Results: the Landscape

Overheads. We ran experiments to find out the per-block
access overhead for each of the four ORAM schemes. For this
purpose, we generated a trace of single-block requests, under
different ORAM capacities — 1 MB (256 4KB blocks) versus
1 GB (2'® 4KB blocks) — and replayed it to each ORAM
implementation. The trace was also replayed directly to
S3 without going through an ORAM. In each case, 3 sets
of 100 random requests (for random blocks) were replayed
and the results are presented in Table 1. We measured: the
bandwidth usage (i.e., KB downloaded and uploaded per re-
quest), mean response time (i.e., time from when the request
is scheduled to when it is completed), and outsource ratio
(i.e., ratio between the amount of data stored on the cloud
and locally)®. Comparing to the baseline, all tested ORAM

I Scheme [Without [ObliviStore [PathORAM [LayeredORAM [PracticalOS]

m | Bandwidth 4 79.26 287.95 468.48 660.68
Z [Resp. time| 0.076 0.079 0.322 1.544 2.386
™ ["Outsource oo 1.57 2.87 N/A% 7.96
m | Bandwidth 4 140.06 608.05 846.64
f Resp. time | 0.085 0.156 0.406 1.487

Outsource 0o 538.50 929.35 N/A

Table 1: Overhead of single-block requests. Bandwidth usage (in
KB/req), mean response time (sec), and outsource ratio were mea-
sured, for ORAM capacities: 1IMB, 1GB; the block size was 4KB.

schemes incurred significant overheads. While ObliviStore
stands out with the lowest bandwidth usage and response
time, its response time is nearly doubled when its capacity
goes up from 1 MB to 1 GB (i.e., 0.156s vs. 0.079s). In
contrast, the response time of PathORAM for 1GB is only

?Measured through the download/upload of a 100MB file from/to S3.

3111 all experiments, we calculate the outsource ratio experimentally
based on the peak memory usage of each scheme during the replay.

c
o

o

o ObliviStore

4 PathORAM ®
— 3l| © LayeredoRAM 12F
= +_PracticalOS =
e @
2 gm
@ 25 2
g te , 0+ " F e
2 * * o ** 5 o
S 2 ¥ % ¥ 3 8
g B0 g £
e o Ly o 5
S 150] 2 6
E] e L3] o
E : A
3T £ 2
g O% o g
o 05+ @Q}OO g & 2F @

A a8 ELS

X107

o *
= o ObliviStore
25 4 PathORAM o .
2 o LayeredORAM 2%
2 +PracticalOS o g
G 4 =}
8 o
8
= T
— 5
o Oblvistore g4 ox B
& PathORAM g
5 LayeredORAM £ B
+PracticalOS 2 *
=Ll
2 Op %
AR g A
2 A
A A il A A
maw @ 0 = A

40 60 80 100 120 140 20
Theoretical metric (bandwidth overhead)
(a) Response time

20

40 60 80 100
Theoretical metric (bandwidth overhead)

(b) Throughput

120 140 0 20 40 60 80 100 120 140 160 180
Theoretical metric (bandwidth overhead)

(c) Monetary cost

Figure 2: Theoretical metric (i.e., bandwidth overhead) against a variety practical metrics for the considered ORAMSs. For all schemes we
consider block sizes of 1KB, 4KB, and 16KB. The considered number of blocks (i.e., n) were: 4, 16, 64, 256, 1024, 4096, for PathORAM and
LayeredORAM; 1024, 4096, 8192, 16384, 65536, 262144, for ObliviStore; and 4, 8, 16, 32, 64, 256, for PracticalOS.

26% higher than for IMB. This is surprising because in both
cases the bandwidth usage for 1GB is roughly twice that of
1MB, while bandwidth was one of the foremost performance
metrics. Yet, it did not seem to correlate well to the response
time across schemes.

To better understand this phenomena, we ran more ex-
periments with a wider range of ORAM capacities and block
sizes. Besides response time, we also measured throughput
(in number of requests per second) and monetary cost. We
varied the number of blocks to keep the bandwidth consump-
tion in different schemes within a comparable range. Fig-
ure 2 plots the relations between bandwidth as a metric and
several practical metrics such as response time, throughput,
and monetary cost.

We observed that, when bandwidth was not saturated,
bandwidth as a metric did not reflect very consistent ef-
fect on other metrics such as response time, throughput and
monetary expenses. This observation was found to be true
both within and across schemes. For example, PathORAM,
which consumed more bandwidth than ObliviStore, some-
times resulted in lower response time. Even though mone-
tary expense exhibit a strong linear correlation to bandwidth
overhead, not all schemes follow the same line; also PathO-
RAM resulted in lower monetary cost than others despite
its higher bandwidth usage. This indicates a mismatch be-
tween ORAM’s theoretical design and its the practical per-
formance considered in a cloud environment.

Misalignments. To further explore this misalignment, we
measured the performance of the ORAM schemes in the
context of different applications. Specifically, we replayed
various Filebench traces with and without ORAM?®, with a
varying number of application-level requests (i.e., 200 for
varmail, 500 for webproxy, and 1000 for both webserver and
fileserver)®. The replay was done according to the actual
timings of requests produced by different applications as
recorded in the trace.

A real-world cloud application needs to handle multiple
service requests, while the service time experienced by the

4For reasons described in Section 3, we are unable to calculate the
outsource ratio of LayeredORAM.

51n the experiment, we set the ORAM capacity to an appropriate
value, since each trace manipulates a different amount of data.

SWe varied the number of requests based on the intensity of the
communication. For example, varmail has lower intensity than other
traces: 200 requests is roughly 40 seconds of real time.

user is also affected by other requests. To understand whether
current ORAM schemes could support such applications, we
further measured the slowdown factor on batches of requests,
i.e., the ratio between the delays to complete all requests in
a batch, with and without ORAM.

During an oblivious data access, each application-level re-
quest (e.g., getting an HTML page) needs to be translated
into one or more ORAM requests (i.e, read/write blocks),
and the ORAM request further involves multiple rounds of
interaction with the cloud storage server. When an object
cannot be accommodated by a single block, an application-
level request needs to be fulfilled by a sequence of ORAM
requests. This is why the response time when replaying
application-level requests (Table 2) is longer than when re-
playing individual ORAM requests (Table 1). In general,
the request initiated by the application will only be served
after all related blocks have been obliviously retrieved from
(for a get), or written to (for a put) the cloud storage. The
size of ORAM blocks also affects ORAM performance. In
our experiments, we tested two sizes for each application, 16
KB and 64 KB for fileserver, and 4 KB and 16 KB for oth-
ers (varmail, webserver and webproxy). Those are also the
typical parameters adopted by prior ORAM schemes [20)].

The outcomes of our study are illustrated in Tables 2
and 3. In addition to the four ORAM schemes tested, we
include two baselines: (1) “No ORAM” and (2) “No ORAM
with Blocks”, in which files were split into fixed-size blocks.

The results indicate that except ObliviStore, none of the
other ORAM schemes handles the applications well, as ev-
idenced by their substantial slowdowns. ObliviStore was
found to work well with both varmail and webproxy, but it
was unable to keep up with webserver and fileserver, which
were more intensive (sending requests more frequently) than
other applications. In terms of the monetary cost, all these
schemes cost significantly more than the baselines. For ex-
ample, running those applications on top of ObliviStore in-
curred 25 to 200 times the expense of not using ORAM
ObliviStore’s bandwidth overhead ranges from 17.24 to 40.66
per request, and it’s outsource ratio varies from 14.9 to 124.
Similar to the results in Figure 2, we find that the bandwidth
overhead is not strongly correlated to other practical met-
rics. For example, for fileserver with block size 16KB, the
bandwidth overhead is at its lowest (17.24) among all com-
binations of trace and block size, while the monetary cost
overhead is 0.546/0.008 = 68.25 (more than 2.5 times its

Application
varmail (64 MB) | webserver (256 MB) | webproxy (256 MB) | fileserver (256 MB)
Scheme Metric 4KB | 16KB | 4KB | 16KB 4KB | 16KB 16 KB | 64 KB
Bandwidth use (KB/req) 15.96 15.90 14.74 120.04
Baseline (No ORAM) Response time (sec) 0.108 0.003 0.095 0.201
Cost (USD/1000 regs) 0.004 0.002 0.002 0.008
Bandwidth overhead 1.06 1.24 1.00 1.00 1.03 1.09 1.05 1.16
No ORAM (blocks) Response time (sec) 0.125 0.122 0.150 0.094 0.111 0.102 0.186 0.172
Relative slowdown 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Cost (USD/1000 regs) 0.013 0.005 0.003 0.002 0.005 0.003 0.028 0.012
Bandwidth overhead 28.27 35.69 24.92 33.74 30.81 40.66 17.24 20.81
ObliviStore Response time (sec) 0.546 0.169 10.895 3.613 2.454 0.184 15.323 5.105
Relative slowdown 1.002 1.000 3.439 1.246 1.022 1.000 4.716 1.318
Outsource Ratio 120.6 80.8 35.9 30.7 124.0 103.4 14.9 15.1
Cost (USD/1000 regs) 0.412 0.142 0.356 0.132 0.405 0.146 0.546 0.205
Bandwidth overhead 135.78 157.65 153.98 185.84 155.67 189.61 128.10 132.58
PathORAM Response time (sec) 1.564 0.605 1.628 0.726 1.633 0.630 3.487 1.977
Relative slowdown 8.533 3.303 71.473 31.858 8.849 3.476 91.779 52.025
Outsource Ratio 168.6 45.7 540.0 180.0 540.0 180.0 180.0 45.9
Cost (USD/1000 regs) 0.458 0.214 0.518 0.251 0.486 0.238 1.309 0.851

Table 2: Comparison of ORAM schemes replaying various applications traces (see Section 3.1), for various block sizes, and according to various

metrics: mean response time per request (in seconds), relative slowdown, outsource ratio, and monetary cost (in USD per 1000 regs).

varmail (64 MB)

Scheme Metric | 4xB | 16kB

Bandwidth overhead 230.28 258.25

LayeredORAM Response time (sec) 11.641 3.491
Relative slowdown 63.7 19.1

Cost (USD/1000 regs) 2.747 0.909

Bandwidth overhead 1394.12 | 974.13

PracticalOS Response time (sec) 22.824 6.084
Relative slowdown 124.1 32.8

Outsource Ratio 63.7 32.0

Cost (USD/1000 regs) 15.436 3.180

Table 3: Replay of varmail with LayeredORAM and PracticalOS, for
block sizes 4KB and 16KB, respectively.

lowest value). Also, PathORAM uses a significant amount
of bandwidth, the overhead ranges from 128.10 to 189.61,
which is 4 times or more than that of ObliviStore. Yet its
operating monetary cost in most cases comes below twice
that of ObliviStore. Moreover, though PathORAM offers
a higher outsource ratio, its slowdown is significant in all
cases.

Table 3 shows the performance metric for both Layere-
dORAM and PracticalOS for the varmail application. Both
schemes simply cannot handle this application. For Prac-
ticalOS, the median response we measured is quite low (e.g.,
0.147 for 4KB blocks, and 0.117 for 16KB blocks) but the
mean response time (Table 3) is high due to the expensive
reshuffling operation (e.g., 6.084 for 16KB block size). That
is, in terms of response time without considering reshuffling,
the scheme is very competitive. However, even if the reshuf-
fling is performed “offline” (e.g., during periods of inactiv-
ity, thus does not directly impact application performance),
the scheme is still prohibitively expensive monetarily (cost-
ing more than 15 USD per 1000 application-level requests
for 4KB block size). Due to their inefficiency (e.g., it took
PracticalOS more than one hour to replay a trace running 35

seconds on baseline, for 4KB block size.) and high monetary

cost, we did not consider further experiments for LayeredO-
RAM and PracticalOS.

4.2 Understanding the Cost

To gain insights into the aforementioned findings, we looked
at the specific features of each ORAM scheme to under-
stand: (1) what is causing the discrepancy between the
theoretical metric and the practical ones, and (2) what al-
lows some schemes to handle real cloud applications, while
other schemes cannot. To this end, we compared different
schemes, focusing on their features that could make a differ-
ence in the throughput, latency and monetary expense they
could get. We made the following discoveries.

Asynchronicity. An interesting observation is that PathO-
RAM performed reasonably when dealing with single block
requests but caused a huge slowdown when processing ap-
plication requests in batch (e.g., 71 times slower in one
case). Compared with ObliviStore, which handled the ap-
plications much more comfortably, the most prominent dif-
ference between the approaches is their support for asyn-
chronity, which enables ObliviStore to process requests con-
currently. This is critical for performance when the net-
work bandwidth is not a bottleneck. In our research, we
found that the network usages of both schemes, under differ-
ent applications, were well below the bandwidth limit: e.g.,
with varmail over 4KB blocks, PathORAM consumed about
677 KB/s downstream (and the same upstream), whereas at
least 10 MB/s was actually available; ObliviStore consumed
about 537 KB/s downstream and 1163.52 KB/s upstream.
Although the combined bandwdith was greater than PathO-
RAM, it did not have any observable impact on its perfor-
mance. In this setting, latency is the actual bottleneck due
to the relatively small amount of data that needs to be trans-
ferred per request.

Intuitively, it is imaginable that asynchronicity enables an
ORAM scheme to work on multiple requests concurrently,

as also identified in the prior research [20]. Our research,
however, further reveals the unique importance of this prop-
erty to oblivious cloud storage. The root cause here is that
multiple ORAM accesses are required to retrieve a single
application object, when the latter is scattered in multiple
blocks. This inevitably brings up the time cost if the pro-
cess is not asynchronous (and thus cannot serve multiple
ORAM accesses concurrently). Specifically, we replayed the
varmail trace without ORAM (i.e., directly on S3) while en-
forcing synchronous replay, i.e., the next request was not
started until the previous one completed. Surprisingly, this
did not result in an observable slowdown. However, when we
split each object into blocks and ran the process again (still
without using ORAM), we observed a significant slowdown
(e.g., 2.18 for 4KB blocks) in most cases. Observing simi-
lar phenomena with other applications, we learn that asyn-
chronicity is critical for services that access multiple blocks
to retrieve an object, which is common in applications of
cloud storage systems.

Given the importance of asynchronicity, one may ask how
easily it can be achieved. This turns out to be more com-
plicated than it appears to be, and there are many pitfalls
when it comes to implementation. Take ObliviStore [20],
the most promising prior work that supported asynchronic-
ity, as an example. Although the paper formally proved
the security of its construction in handling asynchronous
operations, we discovered a subtle issue that apparently un-
dermined its security claims. The problem stems from con-
current processing of interdependent reads/writes, such as
multiple requests of the same ORAM block. The implemen-
tation of ObliviStore used an “AsyncConflictScheduler” to
sequentialize the processing of requests targeting the same
ORAM block. However, an adversarial cloud server could
still observe the difference between the processing times of a
sequence of highly interdependent requests and that of inde-
pendent requests. To understand whether this would indeed
leak information, we conducted an experiment using our
implementation of ObliviStore in Java, which performs an
equivalent sequentialization of such conflicting requests. We
used two sequences of 1000 requests (with identical request-
ing timestamps): the first randomly read blocks 1 through
1024, whereas the second read blocks 1 through 4. We then
repetitively replayed the two sequences 15 times. It turned
out that a two-sample Kolmogorov-Smirnov test (which re-
turned a p-value in the order of 1077) easily distinguished
the two sequences based on their different processing times:
18.12 seconds on average for the first versus 36.39 seconds
for the second. This issue was not discussed in the ObliviS-
tore paper [20] and appeared to be a realistic attack of the
original C# implementation of ObliviStore.

Bandwidth asymmetry. As mentioned earlier, we ob-
served significant differences in the per request response time
across different ORAM schemes (Table 1), even when the
bandwidth overheads are comparable (see Figure 2a). For
example, for each request, PathORAM always downloads all
the nodes along a path and then uploads the nodes on the
same path, whereas ObliviStore downloads one block per
non-empty layer, and uploads those blocks back later, dur-
ing its background shuffling operation. Due to the presence
of dummy blocks, ObliviStore tends to upload more data
than it downloads on average, per request (e.g., 176.4 KB
downloaded vs 392.7 KB uploaded, for varmail with 16KB
blocks). This has an observable impact on the monetary cost

to support cloud applications. In particular, for the same
ORAM capacity the monetary cost of operating PathORAM
is only slightly higher than that of ObliviStore, even though
the latter uses less than a fourth of the bandwidth. This is
because cloud storage systems tend to charge much more for
uploading data than downloading. For S3, the cost of a put
operation is 12.5 times that of a get operation.

1KB | 2KB | 4KB | 8KB | 16KB | 32KB | 64KB | 128KB
Median | 59.0 | 59.0 | 60.0 | 62.0 | 61.0 | 62.0 | 62.0 91.0
IQR | 11.5|10.0 | 10.5|13.0 | 11.5 20.5 14.0 28.5

GET

Median | 87.5 | 91.0 | 87.0 | 96.0 | 102.0 | 107.0 | 111.5 | 136.0
IQR 17.5116.0 | 17.0 | 18.0 | 25.0 | 20.0 | 35.0 49.0

PUT

Table 4: Median and interquartile range of the response time (ms)
for varying object sizes of single object PUT, GET operations on S3.

Beside financial cost, we may ask whether there is any
performance difference, in terms of response time, between
the get and put operations. For this purpose, we ran a set
of experiments directly on S3 (without ORAM) that per-
formed the operations on blocks of varying sizes (from 1KB
to 128KB). For each size, we created a bucket and populated
it with 1024 blocks of that size, each containing random
data. For each operation and each block size, we performed
the operation on a randomly chosen block (among the pool
of 1024 objects in the bucket). The experiment was repeated
200 times, and the response time for each request was mea-
sured. Table 4 shows the median and interquartile range of
the response time (in ms). The response time is dominated
by the network latency, especially when the block sizes are
small (e.g., < 16KB). The median response time for a put
operation was between 1.45 and 1.8 times that of its get
counterpart. This demonstrates that put operations are not
only more expensive financially but also significantly slower.
The finding shows that compared with the overall bandwidth
consumption, download and upload bandwidths need to be
considered separately for a more realistic measurement of an
ORAM scheme’s performance.

Data access strategies. The pattern of API calls to the
cloud storage server may also affect the ORAM response
time. For instance, PracticalOS downloads a single block
per request, but must perform a full reshuffling of all the
storage blocks every 1/n requests, hence resulting in longer
average response time due to the high cost of the reshuf-
fling. Another less extreme case is PathORAM, whose unit
of data access are nodes (i.e., a set of blocks). It issues
log n+ 1 requests to download (or upload) a path, instead of
z(logn + 1) requests (where z denotes the number of blocks
in a node). Thus one may ask: is it the case that accessing
a fixed amount of data (say 64KB) results in the same de-
lay regardless of whether it is accessed in smaller or bigger
chunks”?

To answer this question, we first ran experiments that
performed get and put operations on 4KB blocks, where the
number of simultaneously issued operations varied from 1 to
16. Here the response time measured the interval between
the initiation of the first operation and when all operations
are completed. Table 5 shows the median and interquartile
range of the response time (in ms) for different numbers
of simultaneous requests: as the number of simultaneously

7In both cases, all operations can be performed in parallel using sep-
arate threads to minimize the overall response time.

Numberofobjectsl 1 | 2 | 4 | 8 | 16 |

GET Median 60.0 | 64.0 | 74.0 | 83.5 | 115.5
IQR 10.5 [15.0 | 40.0 | 37.0 | 78.5
PUT Median 87.0193.0 [106.0 [137.5 | 164.0
IQR 17.0 | 34.5| 57.5 | 81.0 | 81.5

Table 5: Median and interquartile range of the response time (ms) for
varying number of PUT, GET operations on S3, with 4KB objects.

queried blocks increases, so do the response time and its
interquartile range. We note that the increase was not due
to scheduling: the median scheduling time was under 10ms,
even for simultaneous query of 16 blocks.

| Time (ms) | Op [1x64KB|2x32KB[4x16KB [8x8KB | 16x4KB |

. GET 63.0 67.0 85.0 91.0 128.5
Median

PUT 125.0 132.0 129.5 153.5 176.5

5 5 5

75th percentile GET 77.0 84.0 117.5 131.5 184.5

PUT 199.5 172.5 184.0 209.5 234.5

90th percentile GET 110.0 127.0 187.5 202.0 270.0

PUT | 2395 229.5 239.5 301.0 319.5

Table 6: Response time (ms) for simultaneous GET, PUT operations
of varying number of objects of varying size, totaling 64KB in each
case, on Amazon S3.

We then ran another set of experiments to assess the re-
sponse time of accessing 64KB data in varying sizes of blocks
(which are requested simultaneously). Table 6 shows the
median, 75th and 90th percentiles of the response time. We
found that it is significantly faster to access fewer-but-larger
blocks than multiple smaller one, given that their total sizes
remain the same. For example, the median response time
for downloading 16 blocks of 4KB each was 51% and 92%
longer than getting 4 blocks of 16KB each, and 2 blocks of
32KB each, respectively.

These findings suggests that simulation-based evaluation
of ORAM would not reflect the performance of the protocol
over real-world cloud storages. Unfortunately, it is common
in the literature, for instance, to assume a storage backend
whose response time is 50ms, independent of the block size,
type of operation (get or put) and data access strategy.

5. METRICS AND THE GAP

Next, we summarize a list of important metrics in eval-
uating oblivious storage schemes and highlight the gap ex-
hibited by these metrics.

5.1 Metrics for Oblivious Cloud Storage

Response time and slowdown. The response time cap-
tures the per-request delay experienced by the application.
The slowdown measures the ratio of the time taken by an
application to process a batch of operations on top of ORAM
and that of processing the same batch without ORAM. Both
metrics need to be taken into account: the response time
alone is insufficient as it does not capture the impact of
asynchronicity. Though synchronous schemes like PathO-
RAM may exhibit low response times, their slowdowns can
still be high since all requests are processed sequentially.

Monetary expense. The operating monetary cost, though
overlooked by the literature, is a key metric for ORAM.
Indeed, it is one of the most important reasons that people

opt to use cloud services. The monetary cost is not always
strongly correlated with the network bandwidth usage, as
designs with low bandwidth overhead may actually incur
higher monetary expense. On the other hand, monetary
expenses subsumes some traditional metrics, such as server-
storage overhead.

Local storage and outsource ratio. Various ORAM de-
signs minimize the amount of local storage. This is out of
touch with the goal of oblivious cloud storage, and we argue
a better goal is to aim for reasonable outsource ratio (e.g.,
1TB stored on the cloud for 1GB stored locally). Indeed,
workstations and laptops have hundreds of GB of available
local storage, even smartphones have dozens.

To understand the cost of minimizing local storage, we ran
an experiment using PathORAM. which involves a linear-
size position map that can be stored recursively on the cloud
(as opposed to being kept locally). We ran two experiments
consisting of replaying a varmail trace of 200 requests (with
4KB blocks and 1GB ORAM capacity, i.e.,n = 2'® blocks).
In the first case, the position map (about 756KB) is stored
locally, whereas in the second it is stored recursively on the
cloud. Without recursion, the outsource ratio was 929, re-
sponse time 1.712 sec, and slowdown 9.5; whereas with re-
cursion, the outsource ratio was 2869, response time 4.344
sec, and slowdown 24.1. That is, the cost of storing the po-
sition map recursively is: 2.54 times higher response time
and slowdown, a 1.86 times higher monetary cost, all for a
3 times higher outsource ratio.®

Elasticity. An essential feature of the cloud is its elasticity.
While this may not be directly critical for performance, real-
world applications may expect such feature.

Reliability. Cloud applications using S3 as a storage back-
end require that files are stored durably and reliably. This
is especially true for backup or file storage apps. However,
many ORAM schemes keep local state that is not replicated
on the storage, e.g., position maps, cryptographic keys, and
blocks in a local cache. As a result, the reliability guarantee
provided by the cloud is forfeited because critical local data
may be lost due to client-side software or hardware failures.

5.2 Are We on the Right Track?

In this section, we analyze the ORAM literature to un-
derstand if we are moving in the right direction.

Methodology and paper collection. We collected pa-
pers which cited the four ORAM designs, and among those,
papers which proposed (or improve upon) an ORAM scheme.

Analysis and discussion. At the time of writing, the
citation numbers of the four schemes considered in this pa-
per are: 91 (PathORAM, 2013), 47 (ObliviStore, 2013), 61
(LayeredORAM, 2011), and 28 (PracticalOS, 2012). We
found a total of 39 papers citing the four schemes we consid-
ered which proposed new ORAM schemes or improvements.
These 39 papers cited PathORAM 30 times, ObliviStore 16
times, LayeredORAM 23 times, and PracticalOS 10 times.
While tree-based ORAMs have received the most attention
(and PathORAM is the most cited scheme considered), we

8To achieve a constant outsource ratio, storing the position map lo-
cally makes sense as long as the ratio between the block size (in bits)
and log, n is greater than or equal to the desired outsource ratio.

found it less suitable for cloud storage than ObliviStore (see
Section 4).

Also, out of the 39 papers, we found 29 papers mention-
ing asynchronicity and concurrent requests processing, 14
with some discussion of those properties, but only 3 actu-
ally supported such capability with an implemented system
or simulation (all 3 are partition-based and by the same re-
search group). Of these, 2 were published in 2013 (out of
9 ORAM papers) and only 1 was published in 2014 (out of
14 ORAM papers). It seems asynchronicity has not become
the research focus of the community; though, we acknowl-
edge that many ORAM papers do not consider cloud storage
as their primary setting. Finally, we found only one paper [3]
which considers the impact of application/workload in the
cloud storage setting, albeit in simulations.

Our findings suggest that ORAM has improved so much
that practical performance considerations ignored before (in
favor of asymptotic improvements) should now be taken into
account. We also stress that our results may not be appli-
cable to scenarios outside of cloud storage. Nevertheless,
we believe our methodology to understand the gap between
theory and practice may be of value for other scenarios.

6. THE CURIOUS FRAMEWORK

In this section, we propose CURIOUS a general partition-
based framework for oblivious cloud storage, which we argue
and show experimentally is thus far the most promising ap-
proach.

6.1 Design Goals

Sections 4 and 5 indicate that: (1) metrics such as band-
width overhead or client storage, treated as paramount in
the existing literature often fail to capture real world per-
formance; (2) other important metrics and properties (e.g.,
monetary expense, reliability) have been overlooked; (3) even
when targeting the right set of metrics and properties, im-
plementation usually involves many subtle issues (that can
result in security vulnerabilities such as the one described in
Section 4.2) and require major software engineering effort.

Following our findings, we incorporated the metrics de-
scribed in Section 5.1 into the design goals of CURIOUS.
Additionally, we emphasize the following:

1. Compatibility with storage APIs: schemes must use
the APIs of existing cloud storage systems, which do
not offer any ability of computation, since existing cloud
storage services are unlikely to change their APIs to
suit ORAM.

2. Asynchronicity: schemes must be able to process mul-
tiple requests concurrently, so as to offset the adverse
impact of network latency.

3. Elasticity: schemes should be able to grow and shrink
the capacity of the storage in inexpensive ways.

4. Reliability: schemes should be able to efficiently re-
cover from client crashes (e.g., corrupted client caches)
without data loss.

5. Parameterized local storage: schemes should be able to
tune the amount of local storage used, since, for typical
application scenarios, only the actual outsource ratio
matters.

6.2 Design and Implementation

We describe the design of CURIOUS, a modular partition-
based framework, which despite being asymptotically worse

(in terms of bandwidth overhead) is able to outperform
ObliviStore in both monetary expense and response time,
by exploiting some observations of the previous sections.

Modular partition-based framework. CURIOUS uti-
lizes many small constant-size ORAMs (called subORAMs,
or partition ORAMs), and uses existing remote storage ser-
vices in a black-box way. At a high level, the framework
consists of a position map, an eviction cache (both stored
locally), and a collection of m subORAMs (whose state is
kept locally, but whose storage is outsourced to the cloud).
CURIOUS is modular: it cleanly separates the modules so
that modules (e.g., partitions) can be improved upon inde-
pendently, and specific modules may be replaced by others
in order to suit a specific application scenario.

To process a request for block z, CURIOUS uses the posi-
tion map to find which subORAM contains z. It then calls
the subORAM module to both retrieve = and evict one or
more (possibly dummy) blocks to that subORAM. Once re-
trieved, x is put into the eviction cache, and associated with
arandom subORAM. This ensures x will be evicted at a ran-
dom time, preventing the cloud from learning information
about the requests from the subORAM access sequences.

Comparing to ObliviStore. CURIOUS resembles Oblivi-
Store in its partition-based design. However, we made sub-
stantial improvements to meet the additional design goals.

ObliviStore uses a variant of layered ORAM in each par-
tition and includes multiple optimizations such as: back-
ground shuffling, batched shuffling (multiple shuffle jobs can
be batched into a single job), and cache-ins during shuf-
fling. In contrast, CURIOUS performs evictions (which may
lead to shuffling depending on the subORAM technology)
directly after each access. This significantly simplifies the
scheme.

ObliviStore makes use of 4 semaphores (only 2 found in
the implementation) to synchronize the background shuffling
and handling new requests, which involves a complex proce-
dure to avoid timing leaks. CURIOUS bounds the number
of requests processed concurrently using a single semaphore
(initialized to 128, in our experiments) which is decremented
when a request is scheduled, and incremented once the last
storage operation associated with the request completes.

Another significant difference lies in the asynchronous pro-
cessing of concurrent requests. ObliviStore does not define
a concurrency model (i.e., under what circumstances two re-
quests can run concurrently) and must ensure that concur-
rent requests are supported even when a partition is being
reshuffled. This may lead to the security issue detailed in
Section 4.2. It is unclear how (or at what cost) this prob-
lem can be fixed while still retaining other optimizations of
ObliviStore.

Asynchronicity and concurrency. Oblivious processing
of concurrent requests is challenging, and can compromise
security or correctness when done incorrectly. To illustrate
this, consider the sequence of requests get, put, get, all
for the same block z. If an asynchronous scheme processes
these requests sequentially, whereas other requests would be
processed concurrently, it becomes vulnerable to certain at-
tacks (Section 4.2). However, naively processing the three
requests concurrently can compromise correctness or secu-
rity, too. Indeed, naive processing would, for each request,
lookup the position of z (i.e., which subORAM) using the
position map, and then it would retrieve x. Now the cloud

Local state:
1. Position map, storing for each block k: a pair (s, p), where s
is the subORAM, and p the position within that subORAM.
2. Eviction cache, storing pairs (k, s), where k is a block and
s is the index of the associated subORAM.
3. For each of the m subORAMSs: their state.

scheduleGet(k, callback)
e Call schedule(k, L, callback).

schedulePut(k, v, callback)
e Call schedule(k, v, callback).

lookupPos(k)
e Lookup (s, p) for block k.
e If block k is in cache, set s and p uniformly at random.

evictBlocks(s)
e Pick and remove ¢ cache entries of the form (k, s).
e If there are less than ¢ such entries, add dummy blocks.

addToCache(k)
e Pick s, the index of a subORAM, uniformly at random.
e Store (k, s) in the cache.

schedule(k, v callback)

e Call lookupPos(k) to get (s, p).
Call evictBlocks(s) to get e, the set of blocks to evict.
Call s.retrieveBlockAndEvict(p, e).
If v # L, then overwrite then content of block k with v.
If block k is newly retrieved, call addToCache(k).
Call callback.

Figure 3: Modular framework construction.

observes three concurrent requests to the same subORAM,
an event that would happen only with probability 1/ m? for
m subORAMs (e.g., m = 2'%), if the three requests were
independent. In addition, we need to ensure correctness,
i.e., the last request (get) must return the data written to
the block by the 2nd request (put), and consistency, e.g., a
request should not unexpectedly override something written
by a concurrent request.

To address these requirements, CURIOUS leverages mod-
ularity and adopts a simple concurrency model: the event
that any two requests are run concurrently is statistically
independent of their requests’ parameters (i.e., type and
block). To ensure this, CURIOUS uses a sequential schedul-
ing process that detects whether two requests are “in con-
flict” (e.g., they access the same block). By keeping track
of pending requests, the framework can make such conflicts
oblivious to the cloud (i.e., it appears as if such conflicting
requests are of any two random requests).

Construction. Figure 3 describes the modular construc-
tion of CURIOUS. The interface includes scheduleGet and
schedulePut, both of which are asynchronous (i.e., the call
returns immediately, but the callback is invoked upon com-
pleting the request).

To process requests concurrently as well as obliviously,
CURIOUS ensures that the event that any two requests are
processed concurrently is statistically independent of those
requests. Each request will operate on a random subORAM
S0 two requests are only competing (i.e., must be executed
sequentially) if they operate on the same subORAM. When
a request operates on a subORAM, it gets a lock on it and
only accesses blocks of that subORAM.

We schedule two competing requests sequentially, though
the request processing (i.e., accessing the subORAM) can
be asynchronous and concurrent. The idea is that when
scheduling a request, the framework will mark the targeted
block as “in transit”, indicating that a request is in the pro-
cess of retrieving that block. Subsequent requests for the
same block are aware of the fact that the block is already

being retrieved so they perform a dummy access (to a ran-
dom subORAM) to hide (to the cloud) the fact that the two
requests targeted the same block. Upon finishing the first
request, the block is put in the cache, and also delivered to
each concurrent request targeting the same block. This pre-
vents the kind of leaks uncovered in Section 4.2, at the cost
of disallowing requests to concurrently operate on the same
subORAM.

To address correctness, i.e., it must appear (to the appli-
cation) as if requests are processed sequentially, CURIOUS
maintains a version id in the header of each block. This
allows the framework to ensure that every get always re-
trieves the correct version of the data, even in presence of
concurrent puts to the same block.

Eviction. Akin to ObliviStore, when a block is added to the
eviction cache (e.g., as a result of a request) it becomes as-
sociated with a uniformly randomly chosen subORAM. This
random choice is integral to ensure obliviousness. CURIOUS
performs evictions right after each subORAM access, i.e., a
constant number of blocks associated with that subORAM
(in the eviction cache) are re-written to it. Dummy blocks
are used for padding, if needed. The subORAM module
decides how many blocks are evicted.

To the cloud, the eviction process is statistically indepen-
dent of the requests, because all it sees is a fixed number of
blocks (some of which may be dummy) evicted to the same
subORAM that was just accessed. This is guaranteed if the
subORAM’s module eviction process (in terms of what the
cloud sees) is also independent of which blocks are evicted.

Security. Part of the challenge to secure an asynchronous
scheme involves timing. There are two ways in which tim-
ing may leak information: (1) through the application run-
ning on top of ORAM whose requests have input-dependent
timing patterns, and (2) due to a weakness in the ORAM
design itself. Like ObliviStore, CURIOUS only addresses
the latter. The former is not meant to be prevented by
ORAM, which was not designed to hide application timing.
We adopt the security definition of ObliviStore (Definition
1), which roughly says that for any two applications with
the same timing pattern, the ORAM’s timing and accesses
must be statistically indistinguishable.

To prove the security of CURIOUS we need to show that
what is observed by the cloud provider is statistically inde-
pendent of the requests (i.e., type, blocks, timing). Consider
a CURIOUS instance of a fixed capacity with m subORAMs.
The cloud sees: (1) the timing of operations to the storage,
(2) the sequence of subORAMs accessed, and (3) the exact
operations to each subORAM'’s raw storage.

CURIOUS’ concurrency model (as argued above) takes
care of (1). Regarding (3), we already argued for the sta-
tistical independence of the requests, after introducing the
proposed subORAM design. This leaves (2) to be dealt with
here.

THEOREM 6.1. For any sequence of t requests, the se-
quence of subORAMs accessed by CURIOUS is statistically
independent of the type and target block of those requests.

PrOOF. Consider an arbitrary request; there are three
possibilities for the targeted block: (1) it has not been re-
quested before; (2) it has been requested before and is in the
cache; or (3) it has been requested before and is not in cache.
Since during initialization blocks are randomly assigned to
a subORAM, for (1), from the point of view of the cloud, a

Storage organization:
1. A b-ary tree of depth d where each node has a capacity of
z blocks.

retrieveBlockAndEvict(p, €)
e Retrieve path ending at leaf p from storage.
e For each block € e, pick a random leaf I.
e For each block € e, update the position map with its new
leaf I.
e Rewrite path p, pushing blocks down to the leaf as far as

possible.

Figure 4: Tree-based SubORAM.

uniformly random subORAM will be accessed. For (2), the
block is in the cache, so a uniformly random subORAM will
be accessed. Finally for (3), the block is not in the cache, so

it must have been evicted earlier, when a uniformly random
subORAM was visited. []

SubORAM designs. A subORAM module defines a single
function: retrieveBlockAndEvict, which retrieves a block
(given its position information) and evicts a list of blocks in
one operation. The module is a tree-based ORAM, which
resembles PathORAM [22]. Thanks to bandwidth and cost
asymmetry, as well as the raw data access trait (i.e., it is
faster and less expensive to access fewer but bigger chunks
of data) of cloud storage system, we found PathORAM fits
better to the subORAM design than LayeredORAM and
PracticalOS. The construction, shown in Figure 4, makes
use of a b-ary tree (for any b > 2) whose nodes are buckets
containing z blocks, for a small integer z.

The security of this subORAM design can be easily de-
rived from that of PathORAM. Namely, blocks written to
a subORAM are associated with a uniformly random leaf,
hence a random path accessed per ORAM read/write. Note
that, there is no stash associated with the subORAM, in-
stead when a path overflows, we add the overflown blocks
to the client cache. We can choose values of b and z, such
that the outsource ratio remains satisfactory. Additionally,
in order to exploit the download/upload asymmetry, we can
deterministically re-write only the first half of the path some
of the time, e.g., for the first out of every two re-writes, so as
to lower the average number of uploaded nodes per request
(at the cost of lowering the outsource ratio, since blocks are
more likely to overflow).

6.3 Extensions

Elasticity. CURIOUS supports growing/shrinking its ca-
pacity in two ways. The first way supports elasticity inde-
pendent of the subORAM module. To increase the capacity,
the framework adds a new subORAM instance, randomly
re-associates blocks in the eviction cache, and proceeds to
build the subORAM locally until it can be written to the
storage. This is done as in ObliviStore [20] by moving some
random blocks from the existing subORAMs to the new in-
stance. Randomly re-associating blocks in the cache with
uniformly chosen subORAMSs hides which blocks from the
cache (if any) will be evicted to the new subORAM. The
fact that a new subORAM was allocated is not hidden. In
order to shrink the capacity, before a subORAM is deleted,
all its blocks must be retrieved from the storage and added
the eviction cache, after which we randomly re-associate the
blocks in the cache to subORAMs.

The second approach of elasticity comes from the sub-
ORAM module, assuming the subORAM offers elasticity.

varmail | webproxy || webserver | fileserver

[[Metric 16KB | 16KB || 16KB | 16 KB

% Bandwidth usage || 623.0 590.8 454.9 2159.8

?Q: Response time 0.196 0.200 7.950 13.531
:E Slowdown 1.000 1.000 1.152 3.767
8 Monetary cost 0.153 0.144 0.113 0.548
Outsource Ratio 171.2 99.5 16.1 18.5

03 Bandwidth usage || 1025.0 988.7 852.5 4500.4
E —cg Response time 0.270 0.266 2.004 2.114
g % Slowdown 1.000 1.000 1.114 2.702
O < | Monetary cost 0.081 0.078 0.067 0.355
Outsource Ratio 209.7 111.3 25.6 18.7

Table 7: Replaying application traces with ObliviStore and CURI-
OUS, all in 16KB blocks, and according to various metrics: bandwidth
usage (in KB/req), mean response time (sec/req), relative slowdown,
monetary cost (in USD / 1000 req), and outsource ratio. 1000 re-
quests for both varmail and webproxy, 2500 for webserver, and 750
for fileserver. For CURIOUS tree-based, we set b = 3 and z = 5.

Layered ORAMs naturally support both adding a new layer
(to increase capacity) and merging a layer down to lower lay-
ers, provided all blocks fit in the lower layers (to reduce ca-
pacity). Recent work has shown that tree-based designs [13]
can also be augmented to support grow/shrink operations.

Note that elasticity leaks an upper bound on the capacity
of the scheme. To avoid leaking more than this, we can let
the application ask for an increase/decrease in capacity, and
instead of performing such operations right away, we can do
them lazily over time, or at random times.

Reliability. ORAM state, i.e., the encryption key, the po-
sition map, and the eviction cache, stored locally may be
lost when a failure occurs (e.g., hardware failure). The en-
cryption key can be derived from a secret (e.g., password).
The position map can be reconstructed by reading the en-
tire storage (with block headers that store a block id and
version id). However, some blocks in the eviction cache may
not have a copy on the cloud, so that they would be lost if
a failure occurs.

We propose to backup this information obliviously, during
the processing of requests, by making use of a circular buffer
of size O(m~y), where m is the number of subORAMs, and
~ is a parameter. (We set v = O(logm), or v = w(logm),
depending on the desired bound on the probability of data
loss.) The idea is that with each request, we backup, to the
circular buffer, a small (constant) number of blocks newly
added to the cache. This works because processing each
request results in only a small number of new blocks added
to the cache (typically 0 or 1). If each request backs up
the previous request’s new blocks, the risk of data loss is
minimized. In the event of a failure, the data blocks can be
retrieved by reading the entire circular buffer.

6.4 Evaluation

We evaluate CURIOUS against ObliviStore using the same
experimental setup as in Section 4. We replay the applica-
tion traces, with capacity 256MB and block size 16KB, in
all cases. For a fair comparison, we set the number of sub-
ORAMSs of CURIOUS such that both schemes have roughly
the same outsource ratio (or ObliviStore has the advantage).
The results, displayed in Table 7, show that CURIOUS is
better in supporting the selected applications, i.e., its slow-

down is either the same or less than ObliviStore, despite
the more than doubled bandwidth usage in some cases (e.g.,
for fileserver, the bandwidth usage of tree-based CURIOUS
is 4500.4 KB/req vs. only 2159.8 KB/req for ObliviStore).
Further, we see that the monetary expense incurred by CU-
RIOUS is between 1/2 and 2/3 that of ObliviStore. In terms
of applications, both varmail and webproxy are easily sup-
ported by both schemes, but CURIOUS has slightly higher
response time (e.g., 266 ms vs. 200ms for webproxy). This
is due to the background shuffling of ObliviStore which, for
less demanding applications, is beneficial because the shuf-
fling cost is not paid upfront. For such applications, min-
imizing the response time below a certain threshold may
not be required; instead in such cases, monetary expenses
may outweigh small differences in response times. For these
applications, CURIOUS’ operating monetary cost is almost
half of ObliviStore. Also, the comparison is conservative
as ObliviStore’s performance may degrade after the security
issue on handling concurrency (Section 4.2) is fixed.

For the demanding applications (i.e., webserver and file-
server) which stressed ORAMs, CURIOUS is a better fit
than ObliviStore. Indeed, due to background shuffling, and
high upload cost, ObliviStore experienced high response times
and larger slowdown. Take webserver as an example, the
response time was almost 4 times that of CURIOUS (i.e.,
7.950 sec/req for ObliviStore vs. only 2.004 sec/req for CU-
RIOUS) but the slowdown was comparable; both schemes
were close to being able to fully support the application.
For fileserver, though neither scheme is even close to satisfy-
ing the demands of this application, nevertheless CURIOUS
significantly outperformed ObliviStore both in response time
and slowdown.

7. CONCLUSIONS

In this work, we systematically evaluated four representa-
tive ORAM designs on Amazon S3. We replayed simulated
traces that represent typical workloads of applications like
web servers, mail and file servers. We found that exist-
ing ORAM designs are unable to support such applications,
partly due to mismatches between ORAM theory and prac-
tical performance and requirement of cloud applications. We
converge to a set of metrics and important properties, and
describe CURIOUS, a modular framework which is the most
promising approach thus far to oblivious cloud storage.

8. ACKNOWLEDGEMENTS

This work is supported in part by the National Science
Foundation under Grant Number CNS-0964392, 1223967,
1117106, 1223477, 1223495, 1408874, and NSF-1464113.

9. REFERENCES

[1] D. Boneh, D. Mazieres, and R. Popa. Remote
Oblivious Storage: Making Oblivious RAM Practical.
2011.

[2] K. Chung, Z. Liu, and R. Pass. Statistically-Secure
ORAM with O(log? n) Overhead. ASIACRYPT, 2014.

[3] J. Dautrich, E. Stefanov, and E. Shi. Burst ORAM:
Minimizing ORAM Response Times for Bursty Access
Patterns. In USENIX Security, volume 14, 2014.

[4] S. Devadas, M. van Dijk, C. W. Fletcher, and L. Ren.
Onion ORAM: A Constant Bandwidth and Constant
Client Storage ORAM (without FHE or SWHE).
TACR ePrint, 2015.

[5] O. Goldreich and R. Ostrovsky. Software Protection
and Simulation on Oblivious RAMs. Journal of the
ACM, 1996.

[6] M. T. Goodrich. Randomized Shellsort: A Simple
Oblivious Sorting Algorithm. In SODA, 2010.

[7] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko,
and R. Tamassia. Oblivious RAM Simulation with
Efficient Worst-Case Access Overhead. In CCSW,
2011.

[8] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko,
and R. Tamassia. Practical Oblivious Storage. In
CODASPY, 2012.

[9] E. Kushilevitz, S. Lu, and R. Ostrovsky. On the
(In)security of Hash-Based Oblivious RAM and a new
Balancing Scheme. In SODA, 2012.

[10] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi,

K. Asanovic, J. Kubiatowicz, and D. Song.
PHANTOM: Practical Oblivious Computation in a
Secure Processor. In CCS, 2013.

[11] T. Mayberry, E.-O. Blass, and A. H. Chan. Efficient
Private File Retrieval by Combining ORAM and PIR.
In NDSS, 2014.

[12] R. McDougall. Filebench Tutorial. 2004.

[13] T. Moataz, T. Mayberry, and E. Blass. Resizable
Tree-Based Oblivious RAM. TACR ePrint, 2014.

[14] T. Moataz, T. Mayberry, and E.-O. Blass. Constant
Communication ORAM with Small Blocksize. In CCS,
2015.

[15] O. Ohrimenko, M. T. Goodrich, R. Tamassia, and
E. Upfal. The Melbourne Shuffle: Improving Oblivious
Storage in the Cloud. In ALP. 2014.

[16] B. Pinkas and T. Reinman. Oblivious RAM Revisited.
In CRYPTO, 2010.

[17] L. Ren, C. W. Fletcher, A. Kwon, E. Stefanov, E. Shi,
M. van Dijk, and S. Devadas. Constants Count:
Practical Improvements to Oblivious RAM. In
USENIX Security, 2015.

[18] S. Shepler, E. Kustarz, and A. Wilson. Filebench.
http://sourceforge.net/projects/filebench/,
2015.

[19] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li.
Oblivious RAM with o((logn)®) Worst-Case Cost. In
ASIACRYPT, 2011.

[20] E. Stefanov and E. Shi. ObliviStore: High
Performance Oblivious Cloud Storage. In Sé&P, 2013.

[21] E. Stefanov, E. Shi, and D. X. Song. Towards
Practical Oblivious RAM. In NDSS, 2012.

[22] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren,
X. Yu, and S. Devadas. Path ORAM: An Extremely
Simple Oblivious RAM Protocol. In CCS, 2013.

[23] X. S. Wang, T.-H. H. Chan, and E. Shi. Circuit
ORAM: On Tightness of the Goldreich-Ostrovsky
Lower Bound. IACR ePrint, 2014.

[24] P. Williams and R. Sion. Single Round Access Privacy
on Outsourced Storage. In CCS, 2012.

[25] P. Williams, R. Sion, and A. Tomescu. PrivateFS: A
Parallel Oblivious File System. In CCS, 2012.

http://sourceforge.net/projects/filebench/

	Introduction
	Background And Preliminaries
	Cloud Storage
	Oblivious RAM

	Analysis of ORAM on the Cloud
	Methodology
	Optimistic Implementation

	Findings
	Results: the Landscape
	Understanding the Cost

	Metrics and the Gap
	Metrics for Oblivious Cloud Storage
	Are We on the Right Track?

	The CURIOUS Framework
	Design Goals
	Design and Implementation
	Extensions
	Evaluation

	Conclusions
	Acknowledgements
	References

