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Abstract

To argue that it is practical to extend core Haskell to sup-
port higher-order modules, we translate Dreyer, Crary, and
Harper’s higher-order module system (2002, 2003) into Sys-
tem F,. Our translation is the first to fully treat generative
functors (with existential types) alongside applicative ones
(with Skolemized types). Applicative functors correspond to
higher-order polymorphism in idiomatic Haskell—abstract,
higher-kinded type constructors, accompanied by term com-
binators. Higher-order functors correspond to higher-rank
polymorphism in F,, which is practical to add to Haskell
and has been added (Peyton Jones and Shields 2004).

The difference between generative and applicative func-
tors boils down to whether existential type variables scope
under or over the typing context. Thus we can express func-
tor bodies that mix generative and applicative parts, which
are inconvenient to simulate in Dreyer et al.’s language.
Also, we elude the avoidance problem (the lack of minimal
supersignatures) because existential quantification is prim-
itive in F,. Although modules are first-class values, type
sharing and the phase distinction are both preserved: the pro-
grammer can make fine-grained trade-offs between opaque
and transparent types, and two modules are statically equiva-
lent just in case they have the same type. Our work can guide
further improvements to modularity in Haskell and ML.

1 Introduction

The ML family of programming languages is well-known
for its sophisticated module systems. They not only allow
a program to be divided into reusable parts, but also pro-
vide higher-order facilities to encapsulate transformations
on these parts into functors, which can in turn be reused
and transformed. These facilities have proven utility in real-
world applications, such as a network protocol stack (Bia-

gioni, Harper, Lee, and Milnes 1994) and an extensible in-
terpreter (Ramsey 2003).

Types for modules and functors are called signatures.
Signatures specify interfaces to modules and functors; as
such, they serve as machine-checkable documentation for
the programmer as well as guidance for separate compila-
tion. Signatures can range from being fully transparent to
being fully opaque, depending on how much (type) infor-
mation about the implementation is exposed to clients of the
module. When signatures are not fully transparent, they en-
force abstraction barriers and ensure representation indepen-
dence. For example, a symbol table module that maps be-
tween strings and symbols might expose the fact that strings
are character lists, but not the fact that symbols are inte-
gers. If the implementation of the symbol table changes,
say to represent symbols with pointers instead, then clients
are guaranteed to remain compatible.

Statically-typed higher-order module systems are com-
plex to design and a topic of ongoing research. Some central
issues that have emerged are the following.

Generative vs applicative functors A generative functor
(MacQueen 1986) with opacity in its body, when applied
multiple times to the same input, yields type-incompatible
results. By contrast, an applicative functor (Leroy 1995)
yields type-compatible results. Both kinds of functors are
called for in practice: A generative functor is more appro-
priate for creating symbol tables, because multiple symbol
tables should have incompatible symbol types, so that differ-
ent mappings are not confused with each other. An applica-
tive functor is more appropriate to map an ordered type 7 to
the type of 7-sets, so that the types of 7;-sets and 7,-sets are
compatible as long as the types 7 and 7, are.

The avoidance problem For purposes like type-checking
let-module expressions, it is often useful to find the minimal
supersignature o’ of a given signature o that avoids men-
tioning some module variable s. That is, given o and s, we
seek a most informative o’ among the supersignatures of o
that avoid mentioning s. The avoidance problem (Ghelli
and Pierce 1998; Lillibridge 1997) is that some signatures
in some module systems have no minimal supersignature.



First-class modules ML-style module systems distinguish
a core language for programming in the small from modu-
larity mechanisms for programming in the large. The core
language houses terms, which inhabit types; the module
language houses modules, which inhabit signatures. This
design needs additional machinery before modules can be
stored in data structures, passed to and returned from func-
tions, reconfigured based on run-time demands, and so on. A
potentially simpler alternative is to unify the core language
with the module language. Shields and Peyton Jones (2001,
2002) explore such a design for Haskell, which has a weak
module language but a rich core language whose type system
has attracted many proposed and implemented extensions.

Type sharing A statically typed module system needs to
be able to decide whether two given types are compatible.
For instance, a functor that maps an ordered type 7 to the
type of T-sets identifies the ordered type in the input module
with the element type in the output module for type-check-
ing purposes, even if the functor is generative rather than
applicative. Such type information is tricky to propagate in
the presence of higher-order functors (Aspinall 1997; Shao
1999a,b; Stone 2000; Stone and Harper 2000).

The phase distinction Assuming type-checking should be
decidable, and given that program execution can be undecid-
able, the compilation phase of a program, which is guaran-
teed to terminate, must be distinct from the execution phase,
which may not. In particular, type compatibility must be de-
termined with only compile-time information, not run-time
computations. A simple way to enforce this phase distinc-
tion is phase separation: to split programs into a compile-
time part and a run-time part, and make sure the former does
not depend on the latter (Harper, Mitchell, and Moggi 1990).

1.1 Unity in search of clarity

The ML community has explored a great variety of module
system designs. Motivated by the diversity of these efforts
and apparent contradictions among them, Dreyer, Crary, and
Harper recently proposed a unified formalism (2002, 2003)
that deals with many design issues, including those above,
in a single coherent design:

1. Generative and applicative type abstraction are treated
as two different kinds of computational effects, strong
sealing and weak sealing. Applicative functors are a
subtype of generative ones: any functor can be gener-
ative, but the body of an applicative functor must be
judged dynamically pure.

2. The avoidance problem is carefully circumvented by re-
quiring supersignature annotations. This requirement
is burdensome, so the programmer codes in an external
language with existential signatures that does not re-
quire annotations. An elaboration algorithm translates
this external language back to the internal language.

3. Following the ML tradition, modules and signatures
are second-class, that is, distinguished from values and
types. However, modules can be packed into first-class
values using existential quantification (Mitchell, Mel-
dal, and Madhav 1991), and a more convenient open-
scope unpack construct can be added to the language
as an orthogonal feature.

4. Type sharing information is propagated using single-
ton signatures (Aspinall 1997; Stone 2000; Stone and
Harper 2000). Only compatible modules match each
singleton signature.

5. The phase distinction is respected by considering only
the compile-time aspects—static equivalence—of two
modules when comparing them for type compatibility.

Because first-class modules are packed existentially, un-
packing is generative in this system. Dreyer et al. thus argue
that first-class modules propagate less type information than
second-class modules, and are less expressive in this regard
(unless the system is changed to break the phase distinction).

The Dreyer-Crary-Harper language represents one cut-
ting edge in the design of module systems and provides
an attractive basis for future research. However, it is
formidable: one type system contains 73 proof rules for 9
judgment forms. The notions of abstraction effects and static
equivalence are intertwined with other features, so it is un-
clear, say, what it would mean to replace static equivalence
with dynamic equivalence, or why there are two kinds of ab-
straction effects and not one or three. Also, Dreyer et al.
raise without answering the natural question of whether ex-
istential signatures can be incorporated into the internal lan-
guage, obviating elaboration while preserving decidability.
Finally, Dreyer et al.’s claim that first-class modules are not
as expressive as second-class ones in their system does not
entail that such must be the case in any module system that
respects the phase distinction.

1.2 Contributions

This paper presents a type-directed translation from the
Dreyer-Crary-Harper language to System F,, (Girard 1972;
Reynolds 1974) that elucidates the design issues above, an-
swers open questions, and points the way to future improve-
ments to modularity in ML and Haskell.

Generative versus applicative functors We fully treat
both generative and applicative functors for the first time, en-
coding generative functors using existential types (Mitchell
and Plotkin 1988; Russo 1998; Shao 1999a,b; Shields and
Peyton Jones 2001, 2002) and applicative functors using
Skolemized types (Jones 1995a, 1996; Russo 1998; Shao
1999a,b). As we explain in §4.2-3, applicative functors
correspond to the idiomatic encoding of abstract data types
in Haskell, so-called higher-order polymorphism—abstract,
higher-kinded type constructors, accompanied by term com-
binators. The crucial distinction between generative and ap-



plicative abstraction turns out to be whether existential vari-
ables scope under or over the typing context. To express
the latter, we make the novel move of mapping the typing
context of modules to the right (rather than left) of the F,,
turnstile. Functors then come in not two varieties but a spec-
trum of possibilities: F,, can express useful functors that are
generative or applicative on a per-type-variable basis, which
are inconvenient to simulate in Dreyer et al.’s language.

The avoidance problem Existential types are primitive
in System F,, unlike in the Dreyer-Crary-Harper language.
Thus, as we explain in §4.2, modular programming in F,,
does not need elaboration to deal with the avoidance prob-
lem. Although type reconstruction for Curry-style Sys-
tem F and F, is undecidable (Urzyczyn 1993; Wells 1999;
these results intuitively explain why Dreyer et al. encounter
undecidability when trying to make existential signatures
primitive in their language) and it is impractical to require
Church-style type annotations everywhere, extensions to the
Hindley-Milner-Damas type system have been devised that
provide the power of F or F, in exchange for a moder-
ate number of type annotations (Le Botlan and Rémy 2003;
Odersky and Laufer 1996), including an implemented exten-
sion to Haskell’s core language (Jones 1997; Peyton Jones
and Shields 2004). The success of higher-order polymor-
phism in Haskell prompts us to answer Dreyer et al.’s ques-
tion positively: existential signatures can be incorporated in
a decidable internal language with principal signatures and
moderate syntactic overhead.

First-class modules, type sharing, and the phase distinc-
tion System F, has no intrinsic notion of modules and sig-
natures, only terms and types, so all modules are first-class in
our translation. Following Shao’s phase-splitting approach
(1997, 1998, 1999a,b), modules translate to a combination of
types and terms, a split that enforces the phase distinction by
separating compile-time and run-time information. As noted
in §4.3 and contra Dreyer et al., our encoding expresses just
as much type sharing as second-class modules. Sharing oc-
curs exactly when existential quantification is absent, so the
programmer can choose between sharing transparent types
and packing opaque types on a per-type-variable basis. As
one might expect, the phase distinction boils down to the
non-dependent nature of F,: types cannot depend on terms.

Higher-order modules in Haskell In recent work, Shields
and Peyton Jones (2001, 2002) propose several light exten-
sions to Haskell that together encode a first-class, higher-
order module system. Unfortunately, they only encode gen-
erative functors. The present paper can be thought to first
desugar that work to F,,, then extend it to applicative func-
tors. We present our translation in F,,, rather than Haskell
extended with arbitrary-rank polymorphism (Peyton Jones
and Shields 2004), because we find the explicit yet con-
cise notation of (Church-style) F, a less distracting sub-
strate. Besides, using F,, relates our work more directly

to other translations from higher-order modules into F,,-like
languages (Crary, Harper, and Puri 1999; Harper et al. 1990;
Shao 1997, 1998, 1999a,b) and allows type-based compila-
tion techniques to apply across modules (Shao 1997, 1998).

Our work helps Haskell programmers and implementors
in practice by showing how higher-order polymorphism en-
codes applicative functors. This mapping underscores the
importance of higher-kinded types for programming in the
large. Although we do not recommend that Haskell pro-
grammers create higher-order modules through our transla-
tion, we do recommend that they create higher-order signa-
tures so. This emphasis on higher-kinded types also informs
language design, for example favoring record extension over
qualified types to express sharing among type records (§5.1).

Organization This paper is organized as follows.

§2 introduces Dreyer et al.’s source language.

§3 introduces Girard and Reynolds’s target language.

§4 presents the formal translation.

§5 reviews related work and advises future module systems.

2 The source language

Dreyer et al.’s language (2002, 2003) has the syntax below.
Types Ti=TypM |ls:o. 7|1 X712 | {O)
Terms ex=ValM | (e, er) | miM | m,M | eM
[lets=Min (e:7)|fix f(s:0):T. e
| pack M as (o)

Signatures o,p == 1| [T] | [7]| S(M) | Zs:0.p
| TP 50, p | TTs:0m. p

Modules M,N :=s|{|[r]|[e:7]|As:0. M| MN
| {(s=M,N)|miM | m:M
|unpackeaso |M >0 |M:: o
|lets=Min (N:o)

Contexts IFi=e|I,s5:0

We use the metavariables s and f for module variables. As
usual, we take a-equivalent expressions to be identical, and
write E[M/ s] for the capture-avoiding substitution of a mod-
ule expression M for a module variable s in a type, term,
signature, or module expression E.

The key to understanding this work is signatures. As de-
fined above, a signature in this language can be one of the
following. Table 1 expresses these cases in ML-like syntax.

1. The trivial signature 1 is inhabited by the module ().

2. The signature [T] is inhabited by modules [7] with a
single type component 7. That is, a module M with the
signature [7] specifies a type Typ M.

3. The signature [[7] is inhabited by modules [e : 7] with
a single value component e, of type 7. That is, a mod-
ule M of signature [7] specifies a value Val M of type 7.

4. The signature $(M) is only valid when the module M
has the signature [7], that is, specifies some type 7. It
is inhabited by modules [7] that specify the same type 7.
Such singleton signatures encode type sharing.



Table 1: Modules and signatures in the Dreyer-Crary-Harper language and ML-like syntax

Dreyer et al.’s language

ML-like syntax

Modules  Signatures Modules (struct...end) Signatures (sig . .. end)
Trivial Ol :
Type [7]: [T] typet =1: typet
Value le:7]: 7] valv=e:7:valv:t
Singleton M: S(M) typet= M.t : typet= M.t
Structure (s=M,N): Zs:0.p structure s = M structure s’ = N : structure s : o structure s’ : p
Functor Asio. M : TTOVPa g0 p functor f(s: o) M : functor f(s: o) : p

5. The signature Zs:o. p binds the module variable s in
the signature p. It is inhabited by modules (s = M, N)
whose two components have the signatures o and p.
Such structure signatures allow later parts of a module
definition to refer back to earlier parts. The two com-
ponents of a structure are selected using 7r; and 5.

6. The signatures IT°'s:0. p and [TIP®s:0. p encode ap-
plicative and generative functors; tot and par stand for
“total” and “partial”. Functor modules are of the form
As:o. M. The argument module s binds into the return
signature p, so the latter (“the type of T-sets”) can refer
to the former (“an ordered type 77°).

In structure and functor signatures (items 5 and 6 above), the
module variable s binds into the signature p, which can thus
refer to s in singleton signatures like $(s). Such references
evoke, and can be expressed using, dependent types (Mac-
Queen 1986). However, this language respects the phase dis-
tinction: type compatibility is decidable at compile time.

Fig. 1 shows Dreyer et al.’s example of an ML signature
and a matching module, and how this idealized language ex-
presses them. Because the left hand side of a structure binds
into the right, the signature for ¢ can refer to the type com-
ponent of s and match the module [bool X int]. This example
involves no functors: the occurrences of I1 indicate functions
at the core language level, created using fix.

2.1 Two varieties of type abstraction

Dreyer et al. treat type abstraction as computational effects.
Applicative and generative abstraction incur different ef-
fects. Generative functors, when invoked, incur dynamic
effects, resulting from strong sealing in the body, written
M > o. Applicative functors, when created, incur static ef-
fects, resulting from weak sealing in the body, written M::c.

Strong and weak sealing both ascribe a signature o to a
module M, possibly abstracting away some type components
in M. Accordingly, we model both using existential quantifi-
cation in F,, (Mitchell and Plotkin 1988). Informally, how-
ever, ascription happens when applicative functors are cre-
ated but when generative functors are invoked, so each call
to a generative functor may create “new’” abstract types.

For example, the left hand side of Fig.2 defines an ap-
plicative functor SetFun in ML syntax, which turns any type-

with-ordering module (signature ORD) into a set-type mod-
ule (signature SET) for the same type. In Dreyer et al.’s
language, the module expression for SetFun takes the form

AElem:{ORD}.
(...:: {SET where type eclem = Elem.elem}), (1)

(braces indicate ellipsis) and matches a signature of the form

IIElem: {ORD}.
{SET where type elem = Elem.elem}. (2)

The functor body in (1) uses weak sealing. If we remove the
sealing operation, leaving only “...” in the body, then the
module (1) would match signatures more specific than (2)
that inappropriately expose the returned set type. In other
words, (2) would no longer be the principal signature of (1).
Because (1) uses weak sealing, the functor is “total” (tot
in (2)), or applicative. When SetFun is applied twice to Int-
Ord at the bottom of Fig. 2, the resulting types IntSetl.set
and IntSet2.set are interchangeable, although opaque. Weak
sealing made the type system forget that IntSetl.set and
IntSet2.set are both just “int list”, while remembering that
IntSetl.set and IntSet2.set are compatible. If weak sealing ::
in (1) is changed to strong sealing :>, then the functor would
be “partial” (par instead in (2)), or generative. The types
IntSet1.set and IntSet2.set would then be incompatible.
Applicative functors can be implicitly coerced to gen-
erative ones by a subtyping relation <. Nevertheless, dy-
namic and static effects are treated as logically independent
of each other: a module expression may be judged dynam-
ically pure, statically pure, both, or neither. Thus there are
four judgment forms for module expressions. All four fol-
low the general format I" - M : o, where k is P, S, D, or W.
These letters classify module expressions as: both dynami-
cally and statically pure, statically pure, dynamically pure,
or just well-formed. These purity levels form W
the lattice to the right, in which lower purity S \D
judgments entail higher ones. This ordering is N,
written C; meet and join are written M and L. P
Neither dynamic nor static effect correlates with compu-
tational effects at the core language level, such as mutable
references, input/output, and control. This can be seen from
the fact that a module expression M with the signature [7]],
where 7 is any type, can always be turned into the equivalent
module expression [Val M : 7], which is judged pure.



sig struct

type s Zs:[T1. type s = bool (s = [bool],
type t = s X int Xr:9([Typsxint]). type t = bool X int {t = [bool X int],
structure S : sig XS :( structure S = struct (S =
type u Zu:[T]. type u = string (u = [string],
valf:u—s Sf:Ly:[Typull. Typs]. valf = (fny:u = true) (f = [fix fOy:[Typul): Typs. true],
end 1). end O,
valg:t— Su Yg:[Mly:[Typt]. Typ(m1S)H]. valg=(fny:t= “hello”) (g =[fix g(y:[Typt]): Typ(rS). “hello”],
end 1 end OON
(@) (b) (© (d)
Figure 1: A signature (a,b) and a matching module (c,d), in ML (a,c) and Dreyer et al.’s language (b,d)
signature ORD = sig data ORD
type elem elem = ORD {
val compare : elem X elem — order compare :: (elem, elem) — Ordering
end }
signature SET = sig (* persistent sets *) data SET {- persistent sets —}
type elem elem
type set set = SET {
val empty : set empty :: set,
val insert : elem X set — set ... insert :: (elem, set) — set, ...
end }
functor SetFun(Elem : ORD) data SETFUN

:: SET where type elem = Elem.elem = struct
type elem = Elem.elem
type set = elem list ...

end

structure IntOrd = struct
type elem = int
val compare = Int.compare
end
structure IntSetl = SetFun(IntOrd)
structure IntSet2 = SetFun(IntOrd)

= SETFUN (3f. Yelem. ORD elem — SET elem (f elem))
setFun =
SETFUN (- - - :: Yelem. ORD elem — SET elem [elem])

main =
case setFun of {SETFUN setFun’ —

let intOrd = ORD comparelnt :: ORD Int in

let intSet]l = setFun’ intOrd in
let intSet2 = setFun’ intOrd in ...}

Figure 2: An applicative functor that turns an ordered type into a set type. To the left is Dreyer et al.’s sample code using weak
sealing (2002, 2003). To the right is a translation into Haskell using Skolem type constructors, described in this paper. Because
the functor is applicative, not generative, the bottom two lines produce compatible modules.

Following Mitchell and Plotkin’s pioneering work (1988)
and earlier type-theoretic analyses of modules (Russo 1998;
Shao 1999a,b; Shields and Peyton Jones 2001, 2002), our
translation maps generative functors to functions returning
existential types. Also, along lines suggested by Jones
(1995a, 1996) and Russo (1998), and extending Shao’s en-
coding (1999a,b), we map applicative functors to functions
involving Skolemized types. As a preview, the right half of
Fig. 2 shows the mapping at work on the applicative functor
SetFun, in Haskell syntax. This example continues in §4.2.

3 The target language

Our syntax for System F, is fairly standard, as follows.
Kinds
Types

Ki=% |kl =K
Ti=a|t > 1| Yaik.t|dak. T|TIT2
|17y X7y | daik. T

Terms ex=x|Ax:t.e|eer| Aaik. e et

| O 1<e1,e2) | me | mae

| {a=71,e:71) | case e; of {a,x). e>
Contexts I':=T,a:k|Il,x:7]|e

We use the metavariables a,b,t for type variables, and
x,y,z,w for term variables. We also write A ]? for se-
quences of F,, type variables, and 5,7, f for F,, term vari-
ables, even though s and f denote module variables in
the Dreyer-Crary-Harper language, because our translation
maps a module to a type sequence and a term. As with the
Dreyer-Crary-Harper language, we identify a-equivalent ex-
pressions, and denote substitution by [e/x] and [7/a] postfix.

Product types and existential types are included for con-
venience, but for our purposes they can be translated away
using universal quantification in continuation-passing style.
For brevity, we sometimes omit the type annotation “: 7, in



Table 2: Translating judgment forms from the Dreyer-Crary-Harper language to System F,

Dreyer et al.’s language ~» System F,,

Well-formed contexts I'+ ok
Well-formed types I'+ 7 type
Type equivalence 't =10,
Well-formed terms Ire:t
Well-formed signatures '+ o sig

I'roy=o0s
I'roi <o,
'ty M:o
' tM=N:o

Signature equivalence
Signature subtyping
Well-formed modules*
Module equivalence

¢

Fo,l:l-Ok

~ Ty, THTux

T, TFTux

I, Tre: 7

T

To, TFa:xk

To, T, §::61, 5:015F e:0,7
To v M: 3tk IIT. A8y 2Ry 57
I, TF&7: %

e ¢ e

"The type variables 5 may appear free in 7, but not in & or &.
The purity indicator k is P, S, D, or W. If k C S, then 7, and &, are empty. If k C D, then 7, and &, are empty.

the existential term (a = 7, e : T,) when it is clear. We also
abbreviate case e of (f,x). (f=1, ') to open eas (f,x). ¢’. As
usual, the quantifiers ¥ and J scope as far as possible to the
right, and the operators X, —, and = associate to the right.

Higher-rank polymorphism occurs when a term argument
has polymorphic type. Higher-order polymorphism occurs
when a type argument has higher (that is, non-x) kind.

Given any kind «, we write k for the sequence of kinds
Ki,...,K, such that « is equal to k; = -+ = k, = *. For
example, if k is (k¥ = %) = * = %, then & is the two-kind
sequence (x = %), %. Such kind sequences are only used
to present our translation and not a formal part of the target
language. They serve the same role as product or record
kinds in other formulations. The sequence & is empty if and
only if « is %, in which case the kind k = «’ is just «’.

We abbreviate a kinding sequence a; :: ki, ..., dy :: K, tO
d :: k. For example, if 7 is a type, then we denote the type
Aay k. ... day,::k,. T by Ad::k.T. Moreover, if 7 is a sequence
of types 7y, ..., Ty, then we abbreviate the sequence of type
abstractions Ad::k. 71, ..., Ad::R. T,, to just Ad::k. 7.

Given a kind sequence & and a kind «’, we write k = «’
for the kind x| = - - = k, = «’, where n is the length of &.
Thus « is equal to k = * for any kind «. When the kindings
Z:kand 7' :: k=« hold, we can apply 7’ to 7 to get the type
7'ty -+ T,, or T'7 for short, which has the kind «’.

Given two kind sequences & and &', we write Kk = &’ for
the kind sequence k = «{, ...,k = «;,, where n is the length
of #. When the kindings 7 :: R and 7 :: k = &’ hold, we can
apply each 7/ to 7 to get the sequence of types 7|7, ..
or 77 for short, of kinds &’.

If 7 is a type of kind «, then we denote k with 7. We then
shorten Va:: . rd to VYt, and 3d::7. d to Ir.

Suppose thatI', I"is a context in two parts. If I'j, I F 7%
for some type 7, then we inductively define the type I1I".7, so
that I'y + III'. 7 :: % (reminiscent of the deduction theorem).

[T, a::«x). r=1II".Ya::k. T,
ONe,x:t).r=MII7 >,

Also, if 'y, T + e: 7 for some term e, then we define the term

/—)
L ThT,

3)

[le.7=1.

Al e,suchthat'y + AT, e : TIT". 7.
A, a::x).e = AI'. Aa::k. e,
AT, x:7"). e = Al'. Ax:7. e,
In the reverse direction, if I'y + e : III". T for some term e,
then we define the term eI, such that I'y, I' + el : 7.
e, a:k)=(eDa, eI, x:7)=(ex, ee=c. (5)
At the kind level, given a context I" and kind «, we define
the kind I = « below.
T, a:)=>k=T=>«K =«
T x:1)=>k=T>xk,

“)

Ae.c =ec.

(6)

® = K =K.

Also, if 'y, I' F 7::k for some type 7, then we define the type
Al . t,suchthatI'y F Al . 7 :: T = «.

AT, a:6). 7= A da::K . T,
AT, x: 7). t=A. 1, Ale.T=r1.

In the reverse direction, if I'} + 7:: T = « for some type T,
then we define the type 7I’, such thatI'y, I' + 7T :: k.

™, a:k)=0Da, T, x:7)=1, 1e=1. (8)

We also write I' = & to distribute over a sequence of kinds &,
and AT'. 7 and 7T to distribute over a sequence of types 7.

(7

4 The translation

Our translation is sensitive to the typing context: the trans-
lation of the right hand side of a Dreyer-Crary-Harper judg-
ment depends on how the context on the left hand side is
translated. Therefore, we present the mapping as a set of de-
duction rules for judgment forms. Table 2 summarizes the
judgment forms involved. For each judgment form in the
source type system, there is a matching translation judgment
involving the symbol ~», pronounced “translates to”. The
part of a translation judgment to the left of ~» is a source
judgment; to the right is a target judgment. Each translation
rule usually corresponds to a typing rule of the source lan-
guage, so translation rules are numbered according to how
the source rules are numbered in Appendix A of Dreyer
et al.’s technical report (2002).



We identify type expressions that are Sn-equivalent in
this translation. Put syntactically, we write type expressions
below as shorthand for long Sn-normal form. Put deduc-
tively, for each translation judgment form we add a proof
rule that allows applying a 8 or 1 equation anywhere. For
instance, for modules we have the rule

r=r or=a'7

Tre M:o ~ Tor M: iy TIT. A6y Ry 57

T M:o ~ Tor M: 3k I, AR 2R 7. (9)

The subsections below explain the judgment forms and
deduction rules in more detail. Basically:

contexts map to contexts;

types map to types of kind x;

signatures map to types of all kinds;

terms map to terms;

modules map to types alongside terms; and
compile-time equivalences map to type equivalences.

By structural induction on source-language derivations, we
can show that any provable judgment in the source language
translates to a provable judgment in F,. The concluding
judgment of every source-language derivation has a unique
translation. Also, the translation is efficiently computable.
Because Dreyer et al. do not specify an operational or
denotational semantics for their language, we cannot argue
formally that our translation preserves meaning and abstrac-
tion, or that it enforces representation independence. The
description below serves as an informal argument.

4.1 Contexts and variables

The constant context Iy in Table 2 is defined as follows.
I'h = Tyux=x%, ty:VYaux.Tya,
rec:Va:x.(a—a)— a.

The Ty type constructor and ty term constant are used to
encode the static part of a module, with a trivial run-time
representation. For example, a module with just a type com-
ponent [7] (with the signature [7'])) maps to the term ty T (of
type Ty T), where T is the translation of 7. We can easily
implement Ty and ty, as Ty = Aa::x. 1 and ty = Aa::*. ().

The polymorphic fixed-point operator rec is used to
translate fix (Rule 14 in Table 6 in the appendix). The re-
cursion induces a computational effect—partiality—which
we leave implicit in the types. It would be straightforward
to make explicit in the types this or other effects such as
mutable references, input/output, and control, at the cost of
complicating the translation with continuations or a monad.

In the Dreyer-Crary-Harper language, every variable is
a module variable, assigned a signature in the context. On
the other hand, F, distinguishes type variables, which have
kinds, from term variables, which have types. As Harper
et al. note (1990), this distinction indicates phase separation:
types contain compile-time information, and terms contain
run-time information. Modules combine compile-time and
run-time information, so they map to both types and terms.

10)

Table 3: Translating contexts: T+ ok ~» T, '+ ok

e+ ok ~ Iyrok

T'rosig ~ Ty, Trouk )

I,s:orok ~ Iy, T, §::k, 5:55F ok

For example, as shown in Table 2, translation judgments
for pure modules have the form

Thp M:o ~» Tor M:IIT. 57, (11)

The F,,-context I translates the context I', and the F,-type &
translates the signature o. Crucially, the module expres-
sion M translates to a sequence of type expressions 7 (of
kinds &) alongside a term M (of type IIT. 7). The first of
these two parts, the type sequence 7, is known at compile
time and appears in the type of M. Not being a dependent
type system, F,, provides no way for the second part M to
influence 7. Thus is enforced phase separation.

The translation of well-formed contexts is shown in Ta-
ble 3. Respecting the phase distinction as explained above,
we translate each module variable s to a sequence § of type
variables, followed by a term variable 5, whose type may
mention §. Recall from Table 2 that each signature o trans-
lates to a type expression &, of kind « not necessarily x. As
Rule 2 shows, when a module binding s : o is added to the
context, the type arguments that & must be applied to before
arriving at a type of kind x become the type variables § (the
compile-time component of s), and the result &5 of these
applications becomes the type of § (the run-time component
of ). The kind sequence & is analogous to Shao’s flexroot
constructor (1999a,b). The type sequence 5 is called the re-
alization or flexroot instantiation of s.

4.2 Types and signatures

Types and signatures both translate to types in F,,. The rules
are shown in Tables 4 and 5. Source types always translate
to kind-* types in the target, because a source type contains
a single piece of compile-time information, with no run-time
counterpart. Signatures, on the other hand, translate to types
of arbitrary kind. A signature o specifies first the compile-
time information §':: & required of a matching module s : o,
then the run-time information 5§ : &§ required.

The signature translation, rule by rule Each rule in Ta-
ble 5 translates signatures of a different form. Let us examine
more closely the translation of each signature form in turn, in
the order followed in §2. For reference, we also identify in
parentheses the module translation rules for each signature
form, discussed in §4.3.

Trivial Rule 20 (40) translates the trivial signature 1 to the
unit type 1. The latter has kind %, so a trivial module pro-
vides no compile-time information. Its run-time information
has the unit type 1 in F,,.



Table 4: Translating types:

TCp M:[T] ~ TorM:TIT. Tyt

[,s:orttype ~ Ty, T, §

TCrrtype ~ Ty, T Tk

S..A =

SR, 5 6'5’!—7"

I'+TypMtype ~> T, T+T:%
Cr7type ~ To, T -7 %

I'kIIs:o. 7 type ~> Ty, T+ V§:k
I'F 7 type ~ Lo, TFTpu %

*
4
Dk

F|—0'31g ~ FO,FI—O'::K

I'F71 X7 type ~ Lo, TFT  XTpi %

Table 5: Translating signatures:

I'+ok ~ Ty, I'Fok

I'Fok ~ Ty, T'Fok

I+ {o) type ~ Ty, T+ 35 %
Frosig ~ Ty, Trak

I'+rtype ~ To, THT: %

Ir1lsig~ Ty, Tl

TH[T]sig ~ To, THTyux=%* l"|-|[1-]]sig'v>l"(),l_"l-%::ak22
Trp M:[T] ~ TorM:IT.Ty7 [,s:orpsig ~ Ty, [, §uk 5:65-p:k o qper
T'rSM) sig ~ To, TFTyT % [P s:0. psig ~ To, T VSR 65— Ip
T, s:0Fpsig ~ l"o,l_", §uk, 5:05puk 5ot
Ir%:0. psig ~ Ty, T F AR . VSR.GE-pES)  R=2 ) =
I,s:orpsig ~ Ty, T, §uk 5:605-p K 55
TrEsio.psig ~ To, TFASR AR . GIXpr k=K

Type Rule 21 (41) translates the type signature [7'] to the
type constructor Ty, of kind * = x. As this kind indicates,
the compile-time component of a [T]-module is a type T
of kind * (for example, the type bool for the module s in
Fig. 1). The run-time component is then a value of type Ty 7
(for example the value ty bool, of type Ty bool), which is triv-
ial, as explained in §4.1.

Value Rule 22 (42) translates the value signature [7] by
translating the source type 7 to an F,,-type T, as detailed in
Table 4. The signature [7] then also maps to 7. Because T
has kind %, a [7]-module has empty realization—the signa-
ture already specifies the type 7. For example, in Fig. 1, be-
cause the type Typ u translates to the F,-type u;, the signa-
ture [Typ u]] does too. Similarly, the type ITy:[Typul. Typ s
and the signature [ITy:[Typu]l. Typ s] both translate to the
F,-type u; — s1. A module matching that signature (such
as f in Fig. 1) corresponds to an F,-value of that F-type.

Singleton To translate a singleton signature $(M), Rule 23
first translates the module M at the signature [T]. Since
[T] translates to Ty by Rule 21, M must translate to a type T
of kind *, along with a trivial value of type Ty T. The sig-
nature $(M) then translates to that type Ty 7, of kind x. A
module of this signature provides no compile-time informa-
tion, because the signature already determines the type 7.

It is no coincidence that Ty T translates not just $(M), but
also [T] applied to the realization 7. This way, M matches
both the signatures [T] and $(M). For example, the run-
time component in F,, of the module ¢ in Fig. 1 is the value
ty(bool x int), of type Ty(bool X int). This type is Ty applied
to bool X int, as well as Ty(bool X int) applied to nothing.
Thus ¢t matches both the signatures [7] and $([Typ s X int]).

Structure Rule 25 (47-49) translates the structure signa-
ture s:0. p by translating p with o in the context, say to p,

of kind «’. Higher up in the proof tree, that context is even-
tually translated using Rule 2 in Table 3, which translates o,
say to 7, of kind k. A o-module then has realization kinds &,
and a p-module has realization kinds k¥’. The combined sig-
nature Xs:0. p, is realized by a type sequence whose kinds
are k and &’ concatenated. Hence the translation of the sig-
nature has kind k = K’ = %, or (written another way) k = «’.
At run-time, structure modules are just pairs in F,,.

For example, the structure S in Fig. 1 combines two com-
ponents, whose signatures translate to the F,-types Ty (of
kind * = %) and (u; — s1) X 1 (of kind %). Thus S translates
to dupiix. Tyuy X (up — s1) X 1, of kind x = *.

Functor Rules 24P and 24™! (43-46) translate functors.
Both rules first translate the body p with the argument o in
the context.

Rule 24P is for generative functors. It produces a poly-
morphic function type from any o-module—that is, any re-
alization § of kinds &, accompanied by a value of type 75—
to a p-module whose realization is comprised of existential
variables only. Invoking such a function twice produces
two sets of existential variables—hence, two incompatible
p-modules. As the kind % shows, generative functors have
empty realization.

Rule 24%! is responsible for applicative functors, which
by contrast do provide some compile-time information. An
applicative functor is realized by type functions mapping in-
put realizations to output realizations. In other words, the
functor Skolemizes the compile-time component of its out-
put. For each output kind «, the functor provides a type-
level Skolem function from & to «{, in other words a type
of kind ¢ = «]. Hence the compile-time component of the
functor is a type sequence of kinds & = &’. The translation
of an applicative functor thus has the kind (k = &) = *.
This rule is the sole source of higher-kinded type arguments



in the translation image. Hence we claim that higher-order
polymorphism corresponds to applicative abstraction.

The run-time component of an applicative functor is a
polymorphic function, like that of a generative functor, but
its return type is not existentially quantified, so calling it
does not generate a “new” type.

Example We illustrate how we translate functor signatures
using the skeletal code for ordered types and sets in Fig. 2.
The signature ORD there can be written in the Dreyer-Crary-
Harper language as

o o:[T]+ Ze:[IT].
Yc:[MIx:[TypexTypel. Typol. 1 sig, (12)

9 &

where e, ¢, and o stand for “elem”, “compare”, and “order”.
Fig. 3 in the appendix translates (12) to a type sequent in F,:

T, 01::%,0: Ty01 F Adepiixk. Tyel X
((eg Xxe) Do) X1ux=>%. (13)
Similarly, the signature SET in Fig. 2 translates from

o Ye:[T]. Zs:[T]. Zy:[Typs].
i [Tlx:[TypexTyps]. Typs]. 1 sig (14)

EL T3

(where s, y, and i abbreviate “set”, “empty”, and “insert”) to
Lok dejiik. Asy k. Tyel X Ty s1 X851 X
(egXxs)>=s)X1luix>D>x2>x. (15
More interesting is the signature of SetFun, an applicative
functor. To express its type sharing in the source language,
a singleton signature is introduced on the third line below.
o, 0:[T]+
M%%lem: (Ze:[T].2c: [Tx: [TypexTypel. Typoll. 1).
Xe:S(melem). Xs:[T]. Zy:[Typs].
Yi:[Mx:[TypexTyps]. Typs]. 1 sig. (16)
Using Rule 24!, we can translate this signature into F,,.
Ty, 01 %, 51Ty01 +
As k=%, Ve k. (Ty e1 X ((eg Xe) > oy) X 1) e
(Ty e X Ty(slel) X s1€1 X
((ey X s1e)) = senx (k=2 %)= . (17)
The type variable s; in (15) has kind %, but in (17) it is
Skolemized to take the kind * = %. The additional type
argument is the element type e;: the type of sets is s; in (15)
but s1e; in (17). The upshot is that applying SetFun to equiv-
alent element types (say, e; = e}) yields equivalent set types
(thatis, sje; = s1e}). If sy is instantiated with an existential
type variable (as weak sealing does, in §4.3 below, in partic-
ular Rule 51), then the type system would not equate these
set types with any concrete type like listint, even though it
would still equate them with each other, as desired.
If we change SetFun to a generative functor by changing
tot to par in (16), then Rule 24P would translate it to

Io, 01::%,0:Tyor +
Ver:ix. (Tyey X ((ey X e1) = 01) X 1) > Asy k.
Tyer X Ty sy X 51X ((e; Xs1)—>s1) X 1%, (18)

As always with generative functors, this type is of kind *: it
no longer takes Skolemized types as realization arguments.
As the “— 37 indicates, applying this SetFun to the same
element type twice yields inequivalent set types.

The avoidance problem For a given F,-type to be the
translation of some signature, it must “name every type be-
fore using it”. To name a type 7, when 7 is of kind x, is to
provide (trivial) data of the type Ty 7. For instance, the fol-
lowing type expressions, of kind * = %, may be translations
of some signatures.
Aspiix. Ty s (19a)
Aspiix. Ty sy X 51 (19b)
Aspiix. Ty sy X (Vsyx. Ty s; = Ty sp) (19¢)
Indeed, they are the translations of [T], Zs:[T]. [s], and
Ts:[T]. s :[T]. S(s). By contrast, the type expressions
below, also of kind * = %, cannot be the translation of any
signature because they use s; without naming s, to the left.
ASyiik. 8 (19d)
Asyiik. 8] XTyS] (19e)
Aspx. (Vs k. Ty s) = Ty s) x Ty s (19f)
Dreyer et al. uses (19f) to illustrate the avoidance prob-
lem. Their example is that the signature

f (T [T].5(s)). S(s) (20)

has no minimal supersignature that avoids mentioning s.
This signature translates to the body of (19f),

(Vs)ox. Ty s] — Ty s1) X Ty s1. 21
To find a minimal supersignature of (20) avoiding s is to find
a signature whose translation in F, is (21) with s; existen-
tially quantified. Because (21) fails to name s; before using
it, there is no such signature. In general, the avoidance prob-
lem occurs when existential quantification puts an F,-type
beyond the image of the signature translation.

To circumvent the avoidance problem, Harper and Stone
(2000) and Dreyer et al. propose that the programmer code
in an external language with existential signatures. In the
external language, the minimal s-avoiding supersignature of
any signature is just that signature with “ds::0.” in front.
On this proposal, an elaboration algorithm translates this ex-
ternal language, which does not enjoy principal signatures,
to the internal language, which does not support existential
signatures but enjoys principal signatures. The elaborator
essentially names types behind the programmer’s back.

Instead of two languages related by an elaborator, it
would be preferable to use a single module language with
both existential signatures and principal signatures. Dreyer
et al. briefly consider such a language, and the present pa-
per shows that F, is another such language. Unfortunately,
in neither language is type reconstruction decidable, and re-
quiring type annotations everywhere is impractical. How-
ever, by asking the programmer for a moderate amount of
type annotations, type reconstruction for System F and F,
can be made practical (Le Botlan and Rémy 2003; Oder-



sky and Laufer 1996), in particular implemented by extend-
ing Haskell’s core language (Jones 1997; Peyton Jones and
Shields 2004). Haskell extended thus satisfies Dreyer et al.’s
four desiderata: existential signatures, principal signatures,
moderate syntactic overhead, and decidable type-checking.

4.3 Terms and modules

As one might expect, terms in the Dreyer-Crary-Harper lan-
guage translate to terms in F,,. Modules, on the other hand,
translate to a type sequence plus a term. For example, the
SetFun functor in Fig.2 realizes the signature translation
(17), of kind (x* = %) = *, with the list type constructor, of
kind x= . The details are in Tables 6 and 7 in the appendix.

Sealing and effects In the general case, a module expres-
sion M translates to a term M of the type

Aty k. OT. 3t 22k 572 (22)
There are two sequences of existential quantification in this
format. The first sequence 7 :: Ry, which scopes over the
context T, is added to by static effects, or weak sealing. In-
tuitively, the compiler statically generates these types be-
fore I is instantiated by any environment. The second se-
quence fi :: &y, which scopes under the context T, is added
to by dynamic effects, or strong sealing. These types are
dynamically generated within particular environments that
instantiate T'. To accommodate the first sequence, we cannot
put I to the left of the F,, turnstile; instead, we put “TIT.”
to the right of the turnstile. This novel move is crucial to
our translating weak sealing into F,, even though applica-
tive abstraction can be expressed more simply in F, outside
the translation image.

The difference between static and dynamic abstraction
manifests in Rules 51 (for weak sealing) and 52 (for strong
sealing). Both kinds of sealing achieve type abstraction by
existentially quantifying over the realization 7 of a signa-
ture & by a module M.

Rule 52 translates strong sealing, which is well-under-
stood in the literature. It replaces each realization type 7; by
a new existential variable #; that scopes under the context.

T M:o ~ ToF M: Ak TIC. A 2Ry 57

Fry(M>0):0 ~
[y - open M as (iy,x).
AT. open xI"as(f1,y). (f=7,y : 1
: Ayriko. OT. 3] 22k F5
Subsequently, the type system only remembers that M real-
izes & with some type sequence: the conclusion type does
not depend on 7, so representation independence is ensured
by an abstraction barrier. This is how Shao (1999a,b) and
Shields and Peyton Jones (2001, 2002) encode generativity.

Rule 51 translates weak sealing, which is newly charac-
terized in this work. It replaces each 7; in the realization
with a series of type applications #I7], where I' and 7] are
the type variables that scope over 7;, and the new existential

52

10

variable #; scopes over the context.

T M:o ~ ToF M: 3k OT. 37 2Ry 77

F'rupM::o):0 ~
Ty - open M as {fy,x).
F=AC. Af k. 7, x 1. 30 k. 0(TH))
cAiyiRe. ATk =6 L. 37 k. (i TH)

Subsequently, the type system only remembers that M real-
izes & with sequence of types that can be abstracted over
any type variable in the context. For example, if a :: k is a
type variable in T, then #,T#; can be abstracted over a to give
Aa::k. t;Tf. This trick is Skolemization, or A-lifting (Johns-
son 1985): whereas strong sealing produces quantified types
like Va::x.3b::k’. - - - b - - -, where a universal variable scopes
over an existential variable, weak sealing produces types like
db::k=«’. Ya::k. ---ba---, where an existential function
variable scopes over a universal variable. (In Rule 51 above,
these universal variables are implicit in II".) As with strong
sealing, the conclusion type does not depend on 7, so this
translation of weak sealing preserves type abstraction and
representation independence.

Rule 43 makes applicative functors. It puts no existential
quantifier on the result realization 7. In fact, it leaves the
term M intact, relying on the dynamic purity of the premise.

51

I,s:oreM:p ~

Lo+ M : 3ty::ke. IT. VSR 575 — pT

[ dsio. M :TT%:0.p ~»
To+ M
23Ry IIT. (AT :R=p. Y 5uR. 075 — p(I8))(A5:k. T)

When a module expression is dynamically impure, only a
generative functor can be made, by Rule 44. A generative
functor does existentially quantify over the result realization.

kED
43

ILs:orcM:p ~
Lo F M : Jig::ko. TIT. V5:R. 75 — 3ty k1. pT

44

I'tgrp As:o. M TTP¥s:07. p ~>
Iy - open M as (fy,x). AT. AS::R. 15:5°5.

case x['§5of (f1,y). (F=7,y : pt)
Ay ke IIT. V§:k. 68— 3p

Our translation’s use of Skolemization for weak seal-
ing sets it apart from Shields and Peyton Jones’s encoding
(2001, 2002), which only treats generative functors, as well
as Shao’s (1999a,b), which supports both applicative and
generative functor signatures, but only strong and not weak
sealing. In Shao’s system, the programmer creates an ap-
plicative functor by first making a transparent functor and
then coercing it to an applicative opaque functor by sub-
typing. As Dreyer et al. note, this technique only works
when every component of the functor body is transparent
within the body—in particular, if the body does not define
any datatypes. Dreyer et al. lift this restriction by introduc-

ing weak sealing, which we faithfully encode.
Shao and us both translate applicative functors to higher-
kinded type constructors. Special cases of this technique are



widespread in Haskell, showing its utility and usability. For
example, container data structures (Okasaki 2000) and mon-
ads (Wadler 1997) are customarily represented by type con-
structors of kind * = *, and monad transformers (Liang,
Hudak, and Jones 1995) have the kind (¥ = %) = (x = *).
These type transformations are accompanied by term com-
binators, for example to turn an ordering on 7-values into an
ordering on T-arrays, or to define monad primitives in terms
of those of a transformed monad. Some of these term com-
binators are encapsulated in type classes, while others are
left as standalone functions. Either way, the type-level maps
correspond to 7in Rules 24!, 43, and 45, whereas the term-
level maps correspond to Y§::k. 5 — p(£5).

Mixing generative and applicative abstraction Our en-
coding of sealing using two sequences of existential quan-
tifiers leads us to contemplate a hybrid between weak and
strong sealing. For example, consider the signature of a
functor that creates symbol tables:
functor(String : sig type string . ..end) : sig

type string = String.string

type symbol

val insert : string — symbol

datatype result = FOUND of string | NOT_FOUND

val lookup : symbol — result ...

end=...

Should this functor be generative or applicative? On one
hand, each symbol table contains its own mapping between
symbols and strings, so abstract “symbol” types returned by
successive invocations of SymbolTable—even on the same
String module—should be incompatible with each other. On
the other hand, we want to share the “result” datatype across
symbol tables with the same string type (while keeping it
incompatible with other algebraic datatypes such as “string
option”). The Standard ML code above does not.

In the Dreyer-Crary-Harper language, the body of a func-
tor cannot mix generative and applicative components. Such
hybrid functors can only be simulated by a pair of functors,
one generative and one applicative. This limitation is due to
the use of an abstraction effect system with a finite number of
purity levels. By contrast, F,, can directly represent hybrid
functors. The signature of a hybrid functor is an F,-type

AR VSR - AEE)) = R=2) =2+ (23)
(cf. Rules 24P and 24! in Table 5), where & is the input
signature (of kind «) and p is the output signature (of kind
K = K for some k). The type arguments 7 express the
applicative part of the functor body, whereas the existential
quantifier expresses the generative part. Whether each argu-
ment to p is generative can thus be specified individually.

Signature subtyping Signature subtyping is translated in
Table 8 in the appendix. A subtyping relationship oy < o
translates to an F,-term that converts o;-modules to o-
modules. Because implicit subtyping in the Dreyer-Crary-
Harper language is carried out by explicit terms in F,,, the
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translation of a module depends on the signature at which it
is typed. We need explicit terms to translate subtyping, in
particular to convert applicative functors to generative ones.

First-class modules Dreyer et al.’s first-class modules are
straightforward to translate (see Rules 6 in Table 4, 50 in Ta-
ble 7, and 19 in Table 6 in the appendix). For example, if
the source signature o translates to the F,-type ¢ of kind «,
then a list of o-modules can be stored in an F,-value of
type list(35":%. 75). Quantifying over § makes the type sys-
tem forget these modules’ realizations, so that several mod-
ules in a homogeneous list can realize the same signature
differently. Unpacking any of them incurs dynamic impurity.

This intentional forgetting of realizations leads Dreyer
et al. to state that “first-class modules cannot propagate as
much type information as second-class modules can.” We
blame the reduced propagation of type information not on
treating modules as first-class values—that is, storing mod-
ules in data structures, passing them to and returning them
from functions, and so on—but on homogenizing types by
making them opaque. The types of first-class modules can
express sharing just fine if we leave them transparent rather
than existentially quantifying over them right away (Shao
1999a,b). For example, the F,,-type 35:k.list(55) expresses
a list of statically equivalent o--modules. Heterogeneous lists
are expressed as tuples in F,,; for example, 75X 7§ X 75"
expresses a heterogeneous list of three o-modules.

Just as with the generative-applicative distinction, there
is a spectrum of options as to how much type information to
propagate, from none to all. For example, if & has the kind
Rl = Ry = *, then the type 3] ::&. list(A55::kp. 7751 55) ex-
presses a list of partially statically equivalent o-modules—
modules that realize o with the same & but incompatible 5.

As an aside, the way F, statically expresses type sharing
among modules can be ported back to Dreyer et al.’s system,
where (contrary to their statement) singleton signatures en-
able first-class modules to express as much type sharing as
second-class modules can. The appendix shows an example.

4.4 Compile-time equivalences

Four signature forms always map to F,-types of kind *, in-
dicating that matching modules have empty realization: the
trivial signature 1; the value signature [7]}; the singleton sig-
nature $(M); and the generative functor signature [1°¥ s:0.p.
Dreyer et al. call these signatures unitary, except they sur-
prisingly exclude singletons.

Table 9 in the appendix translates notions of equivalence.
Remarkably, 26 proof rules in the Dreyer-Crary-Harper lan-
guage are handled by just 3 translation rules. Two types or
signatures are equivalent just in case they translate to equiv-
alent types in F,, (which we regard as equal). Hence type
sharing among modules is encoded with type equality in F,.

Because our translation segregates compile-time infor-
mation into types and run-time information into terms, static



equivalence among modules (“equivalence for type check-
ing purposes”) is also just type equality. Suppose that the
signature o translates to &, and two modules M and N real-
ize o with ¥ and ¥. Then M and N are statically equivalent
at o if and only if 67 and 67 are equivalent. Put another
way, two modules are statically equivalent just in case they
translate to terms of the same type. As a special case, two
modules at the same unitary (or singleton) signature are al-
ways statically equivalent, because 7 and 7’ are both empty.

Due to singletons, whether two modules are statically
equivalent depends on the signature they are compared at.
Our translation captures this dependence by making signa-
ture subtyping explicit and dependent on the target signature.

5 Discussion: related and future work

This paper translates Dreyer et al.’s module language (2002,
2003) to System F,,. Module systems have long been elu-
cidated by translation to languages similar to F,, but this
paper is the first to fully treat generative and applicative ab-
straction, preserving representation independence for both.
We extend Shao’s phase-splitting (1999a,b) to deal with ap-
plicative functors using Skolemized types, as suggested by
Jones (1995a, 1996) and Russo (1998).

To briefly summarize previous translations from module
languages to F,,: Harper et al. (1990) translate two module
calculi AL, and AML into an F,-like language AML. They
preserve phase separation to keep type-checking decidable,
but did not treat type generativity. Taking Harper et al.’s
formalism as their starting point, Crary et al. (1999) study
recursive modules, which Dreyer et al. and us do not address.

Shao (1999a,b) translates several higher-order module
languages into another F,-like language FTC, so as to en-
dow the source languages with simple type-theoretic seman-
tics. His system supports fully transparent functors by keep-
ing track of each module’s realization. He also treats gener-
ative functors using existential quantification, as we do here.
However, as Dreyer et al. explain, because Shao’s system
only has strong sealing, his encoding of applicative functors
only works if the functor body is fully transparent. By com-
parison, this paper completely encodes applicative functors
by Skolemizing types, so that they can be existentially quan-
tified outside the scope of the current context.

What is this translation good for? To be sure, our trans-
lation is not intended for direct programmer use, like F,
itself and Dreyer et al.’s internal and external languages.
These languages lack basic syntactic sugar like component
labels for structures and records. They also provide no way
to define synonyms for a signature, or to add sharing con-
straints to a signature, short of rewriting it at every occur-
rence. Still, these languages are practical in the sense that
they support both generative and applicative functors (as is
called for in practice) and feature decidable type-checking.
Whereas Dreyer et al. treat applicative functors by weak
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sealing inside the body, we treat them by higher-kinded types
outside the body. Thus our translation of weak sealing must
constantly abstract over the context, which makes for clumsy
programming (without implying that any language is easier
or harder to use—cf. translations between the Turing ma-
chine and the untyped A-calculus). Hence we do not pro-
pose that Haskell programmers create terms via our mod-
ule translation. Rather, our point is that languages based
on F,, such as Haskell extended with higher-rank polymor-
phism, already support higher-order modular programming.
As mentioned in §4.3, examples of the utility and usability
of such programming are rife in the literature (for instance
Jones 1995b). We do recommend that Haskell programmers,
now aware that higher-kinded types encode applicative func-
tors, create types via our signature translation. Having codi-
fied this existing practice, we can then guide future work on
modularity in Haskell and ML, as we now discuss.

5.1 Higher-order modules in Haskell

What Haskell calls its module system (see Diatchki, Jones,
and Hallgren 2002 for a formalization) is a facility for
namespace management and (to some extent) separate com-
pilation. It does not support functors. On one hand, Jones
(1995a, 1996) uses higher-order polymorphism in Haskell
to encode first-class modules, in particular realizations and
type-returning functors. Although he notes the connection
between generativity and existential types, he does not pur-
sue type abstraction. Sheard and Pasalic (2003) exercise
Jones’s encoding in two extended programming examples,
which they call “strong evidence that type-parameterized
modules really work.” On the other hand, Shields and Pey-
ton Jones (2001, 2002) encode generative functors with ex-
istential types, but drop Jones’s use of higher-kinded type
constructors to encode type-returning functors.

We encode higher-order functors with higher-rank poly-
morphism, and applicative functors with higher-order poly-
morphism. ML-style modules thus share their usability is-
sues with higher-rank and higher-order polymorphism in
Haskell. We discuss three of these usability issues here.

Sharing style We pass module realizations as arguments
to type constructors, as Jones (1995a, 1996) and Shao
(1999a,b) do. Harper and Pierce (2003) term this way of ex-
pressing sharing sharing by construction. Unlike ML-style
sharing by specification, sharing by construction does not
scale by itself (Harper and Pierce 2003; Jones 1995a; Mac-
Queen 1986), because type arguments can proliferate when
composing signatures, and existing code may have to change
globally when modifying signatures.

To alleviate this burden, Jones and Shao both turn to fype
records. 'Type records are records at the type rather than
value level (on the latter, see Jones and Peyton Jones 1999
and references therein). If the type constructor & has many
realization arguments 7y ::kq, ..., T, ::k,, wWe can collect them



in a record of types {/; = 1y,...,1, = T,}, of the record kind
{ly =2 k1y.. ., 1y it k). Essentially, 74, ..., 7, are keyword ar-
guments to . For example, the signatures ORD and SET in
Fig. 2 can be rewritten to take one argument each, as follows.
data ORD (ro :: {elem :: x}) = ORD
{compare :: (ro.elem, ro.elem) — Ordering}
data SET (rs :: {elem :: x, set:: x}) = SET
{empty :: rs.set, insert :: (rs.elem, rs.set) — rs.set, ...}
We explicitly kind the type arguments ro and rs for clarity.
In practice, these kinds can be inferred by an extension of
standard kind inference (Peyton Jones 2003; §4.6). Or one
could add (record) kind polymorphism to Haskell, so that
more general kinds can be expressed and inferred.

Jones proposes to express sharing among type records
using either qualified types (Jones 1992) or record extension.
Either proposal addresses the scalability concerns above, by
allowing a potentially exponential (in the size of the source
code for the module) number of types to be passed together
yet a few of them singled out for unification. With qualified
types, a polymorphic function that takes as input an ORD
and a SET, sharing their elem types, would have the type

Vro::{elem:: x}. Vrs::{elem:: %, set:: x}.

(ro.elem = rs.elem) = ORD ro —» SETrs — -- -,
wherein = denotes an equality constraint. Using record ex-
tension, one would express the same sharing with the type

Vro::{}. Vrs::{set::x}. Ve:: k.
ORD {ro|elem=e} — SET {rs|elem=¢} — --- .
Here {r|/=1} means to extend the record r by the entry [=T.

At first glance, qualified types may seem to express shar-
ing more directly, but record extension turns out to be more
straightforward for applicative functors. For example, the
SetFun functor is easy to type using record extension:

dfs::{elem:: x}={set::x}.
Vro::{}. Ye::x. ORD {ro |elem =¢} —
SET {fs {ro|elem =¢} | elem = ¢}.
(Following the definition of k=&’ in §3, we equate the kinds
{elem :: %} = {set:: x} and {set :: {elem :: x} = %}.) By con-
trast, quantified types seem to need universal equality con-
straints (which are alien to Haskell, but see Trifonov 2003)
and higher-order- or E-unification (which is undecidable):
dfs::{elem:: x}={elem:: %, set:: x}.
(Vro::{elem::%}. (fs ro).elem = ro.clem) =
VYro::{elem::x}. ORD ro — SET (fs ro).

For the sake of applicative abstraction, then, sharing among
type records should be expressed using record extension.

Existential elimination To ease generative abstraction in
Haskell, Shields and Peyton Jones (2001, 2002) propose an
open-scope 3-elimination construct, similar to Dreyer et al.’s
unpack. This construct also eases our encoding, so that
data SETFUN = SETFUN (3f. (type))
main = case SETFUN (term) of SETFUN setFun’ — - - -
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in Fig. 2 can be replaced with the less clumsy

open setFun’ = (term) :: 3f. (type)

main = - - -
This example shows that our work enables this open con-
struct to ease not just generative abstraction as Shields and
Peyton Jones envision, but also applicative abstraction.

Subtyping On one hand, we translate implicit subtyping
in the Dreyer-Crary-Harper language to explicit conversion
in F, (§4.3). On the other hand, subtyping and bounded
quantification in F,, (Cardelli and Wegner 1985) have been
extensively studied, in particular using record subtyping to
model object orientation (Pierce and Turner 1994). Adding
record subtyping to F,, would let us drop unused struc-
ture components for signature matching. Further adding
bounded quantification (yielding F5) would give (generative
and applicative) partial abstraction, and unify object sys-
tems with module systems. As with plain F,, (Peyton Jones
and Shields 2004), algorithms for partial (especially local)
type inference (Odersky, Zenger, and Zenger 2001; Pierce
and Turner 2000) would make programming in FS practical.

5.2 ML-style module systems

This paper answers two questions about ML-style modules
that Dreyer et al. left open.

The first question is the avoidance problem: can a higher-
order module system with decidable type-checking support
existential signatures and principal signatures with mod-
erate syntactic overhead? Yes (§4.2): Haskell extended
with higher-rank polymorphism (Peyton Jones and Shields
2004) is one such system, though much of the evidence of
moderate syntactic overhead leaves the connection between
Haskell types and ML signatures implicit.

The second question concerns type sharing among first-
class modules: can a higher-order module system propagate
type sharing information among first-class modules while re-
taining the phase distinction? Yes (§4.3): System F, is one
such system, as is Dreyer et al.’s own system. The trade-
off between propagating sharing information decidably and
treating modules as first-class values is thus an illusion.

Refined abstraction and sharing As explained in §4.3, it
is easy and useful in F,, and Haskell to mix generative and
applicative abstraction, and to fully propagate type sharing
information for first-class modules. These patterns are in-
convenient to simulate in Dreyer et al.’s language, because it
uses a coarse-grained effect system that does not keep track
of each type variable separately. Should these patterns be de-
sired in ML-style module systems (as §4.3 argues they are),
one might refine Dreyer et al.’s effect system to keep track
of individual existential quantifiers. The sealing operations
in the module syntax would also need to change.

Type classes Type classes and higher-order polymorphism
in Haskell amplify each other’s utility (Jones 1995b). Our



translation thus suggests that the ML family would benefit
from a type-class facility at the module (rather than core)
language level. Such a facility would bridge modules and
type classes, like Kahl and Scheffczyk’s named type-class
instances (2001), but in the opposite direction.
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Appendix
Type sharing among first-class modules (§4.3)

The way F, statically expresses type sharing among mod-
ules can be ported back to Dreyer et al.’s system, where
(contrary to their statement) singleton signatures enable first-
class modules to express as much type sharing as second-
class modules can. To continue the example in Fig. 2, even
though any list of (type-incompatible) first-class ORD mod-
ules matches the signature

[list (Ze: [T1. c:[TLx: [ Typex Typel. Typol. 1] (24)

(cf. the ORD signature (12)), only a list of type-equivalent
first-class ORD modules matches the signature

Ze':[T1.

[list (Ze:5(e”). Zc: [TIx:[TypexTypel. Typol. 1)I.  (25)
We use a structure signature here, for lack of existential sig-
natures in Dreyer et al.’s internal language. For usability,
it may be possible to extend their elaboration algorithm to
insert the first component ¢’ automatically. Just as with the
avoidance problem in §4.2, such a maneuver is unnecessary
in F,, because existential signatures are primitive.
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Figure 3: Translating the signature ORD in Fig. 2 into System F/,

Table 6: Translating terms: TI'+e:7 ~ T, Tre:7

Fre:7 ~ Ty, Tre: 7 FTr=1t~ Ty, THTu%
IF're:t ~ Iy, Tre:7
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T M:[t] ~ Tor M: 3tk TIT. 3 2Ry T =
I'+ValM:1 ~ Ty, I+ case M of(f,x). case xI of (f,,y). y: T

Tre M:o ~ Tor M: 3tk OC. 37 2Ry 7
[,s:ore:T ~ Iy, T,5:5 5:65re:7 & does not appear free in T
Trlets=Min (e:7): 7 ~ Iy, I+ case Mof(#,x). case xI of (1,5). e[¥/5] : T
T, f:[Ms:o. 7], s:o0Fe:T ~ Ty, l_",f:?, Fub,5:05re:7 "
T +fix f(s:o):T. e:Ms:0. T ~» Ty Frec(p)(Af:p. AS::6. A5:55.8): p
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It may seem that Rule 12 should require that no type variable in 7y or 7, appear free in 7, but that is guaranteed by Validity
(Proposition B.23 in Dreyer et al.’s technical report (2002)). In Rule 14, the type p is always V§::5. 75 — 7.
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TreM:o ~ Tor M: 3k NI A2k 67 T, s:0 ke Nip ~ Do+ N: 3k IE. V56, 078 — 36 k). pT
[he(s=M,N):Zs:0.p ~ T+ open Mas(i,x).open N as(#),y). AT. open xI" as (i},z). open y['#zas (7}, w). (z, w)
s Ay Ro. A&y T 31y 2Ry 37 2R (A6 AT p. 55 % pTT [/ 5]
T M:Zs:0.p ~ To v M: 3k I, 31, 2Ry . (AF:5. Af:p. 578 X pOTT 48
I+ 1M :o ~ Ty Fopen M as {f,x). AL open xI"as (f},y). myy : Ity::Ro. IIT. At} 2k, 57
T M:Zs:0.p ~ To v M: 3k TIT. 31, 2Ry . (A5 Af:p. 575 X pOTT
Ity 1Mo ~ Ty open Mas{fy,x). AL. open xI"as (f,y). myy : Ay::ko. IIL. 31, 2Ry [T/ 517
Fl—e:do-vao,I_“l-é:_H& ] .
I'tsunpackeaso:0 ~ I+ AllLe: 1. A5
TreM:o ~ Tor M: Ak OC. A 2Ry 57
I bep (M::0):0 ~ Toropen Mas {fy,x). (f= AL. Afy:ky. 7, x : TIT. 38, k. (7T 1))
cAiyRe. AT Tk =6 O 37 k. 5 TH)
TreM:o ~ Tor M: Ak OC. A 2Ry 57
Ity (M:>0):0 ~ Ty open Mas {iy,x). Al. open xI"as (f;,y). (f=7,y : 61
s Afg::Ro. IIT. 37 2%y A5
Trp M:[T] ~ To+M:IL. Tyt
Tp M:S(M) ~ Tor M:TIT.Ty7
[rp Asio. Ms:TTI%s:0.p ~ Tor M: 7 4 Tp (s=mM,mM)y :Zs:0.p ~ To-M: 7

44

45

52

- = 55
FI-pMZHtOtSZO'.p’\/)r()I-MI‘T IF'ep M:Zs:0.p ~ Ig-M: 7
T M:o ~ Tov M: gk TIE. 31228y 67
F,s:(ri—kN:p'\»Fol-N:Hto' L. Vs a'a's—>3t1 Ry pT Trpsig ~ Ty, Trpik 56

[ lets=Min (N:p):p ~ T+ open M as(i,x). open N as(#,y). AL open xI" as (7,z). open y['Zz as (7},w). w
2 Tt z:Ro. i) kY. T 30 &y A7 2R pT 7 5]
rl—k/MZCﬁ’\/>FOFM:aﬁ)ZIkQ.HF.aﬁZIk].&]? FFO’]SO’z’\/)ro,f,f}lié'l,flﬁ'lf}l-elé'z‘?, k,gk57
[ty M:os ~ T+ open Mas {f,x). open xI" as (f,5). e[7/5] : Ay::ko. [IT. 3} ::Ry. 527 [T/ 5]

In the conclusion of Rule 48, it may seem that & should be &[7/7] instead, but the binding discipline of structure signatures
(translated in Rule 25 in Table 5) guarantees that £ does not appear free in &. In the conclusion of Rule 57, it may seem that
should be 7, [7/5] instead, but the subtyping premise guarantees that §does not appear free in 7.
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Table 8: Translating signature subtyping: T'rFoy <oy ~ Iy, I, §::61, 5:655Fe: 0,7

I'+ok ~ Ty, T'Fok - I'+ok ~ Ty, T'Fok 13
IF'r1<1l ~ Ty T,5:1F5:1 CFITT<IT] ~ To, T, sy %, 5:Tysi F5: Ty sy
Trri=7 ~ Ty, TFT % 34
T[]l <[] ~ Iy, T,5:7+5:7
FI—O’2S0'1Mro,f,filé'z,fla_'gé—‘)l-e o7
[,s:00Fp1 <py ~ Ty, [, §::69, 5:5,5, 1 f),t_:ﬁlfl—e’:ﬁz?’
T,s:01rpysig~ Ty, I, 56, 5:55p;: 35

I'FIPs:01. o) <TTP¥5:05. pp ~
Io, T, x: V561,515 — 3p1 F AS:62. 15:0,5. case xTe of (f,y). (F =7, ¢’ : pol’)
. V.S?iiaﬁ'g. 5’2.?—) 3/32
[0 pp < TT%%:0%. 00 ~>
Lo, T, @61 = pr1, x:V5:u:61. 015 — p1(@5) v AS:55. A5:55. ' [xTe/T|[aT/1]
C(A Gy =Py VT 028 — pa(f D))(AF: . T[AT/ 1))
CFI%:0. p) <TTPYs5:0. pp ~>
To, T, d:61=p1, x: V551,515 = p1(@5) v AS::65. A5:6-5.(f = ?'[a7/1), ¢' [xTe/T|[aT/1) : pof’)
V56, 08— Apy

IF'toy <oy ~ T, f, EIZ&],EI@']EFEIO_'Q?
[,s:o1kp1<py ~ Lo, [, 806, 5:55 T:p1, [:p1ir e : poT
F,s:azl—pzsigf\»FO,F,E::&Z,E:&zi’I—pz':K 36

I'FXs:01.01 £ X5:03.00 ~>
F(), l:, 5’125‘1, l?lif)l, x25'1§Xﬁ1FF (e,e'[nzx/f_l)[mx/i]
D(AF 205, AP 2Py, 528 X pot )T
Tre M:[T] ~ To+M:III. Ty T TEM=N:[T] ~ Lo, TFTy7: %
TrSM)<[T] ~ To, T, 5:TyTr5: Tyt FrS(M)<S(N) ~ To, I, 5:Tytr5: Tyt

Rule 35 is really three rules with the same premises but different conclusions.

Table 9: Translating equivalences

Cr1itype ~ T, T Tk T+opsig~ Tg, THFk FI—pM:O'MFOI—M:Hf.&?
l"k‘rgtype'v)l"o,l_"k‘?::*710 Thoysig ~ Ty, Trak 2631 TtpN:o ~ Ty N:IIT.67
Trri=1 ~ Ty, THT % Troy=0y ~ Ty, TFG 1k TrM=N:oc ~ Ty, TrFoZu %
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