
Against the division of labor in scope and binding

Chung-chieh Shan, Harvard University∗

ccshan@post.harvard.edu

LSA meeting, 6 January 2005

Different quantifiers take scope differently.

(1) Island(/locality/intervention) effects:
a. Alice read every paper that a professor recommended.

(a professor can take wide scope over every paper that)
b. Alice read every paper that every professor recommended.

(every professor cannot take wide scope over every paper that)
(2) Availability of inverse scope:

a. 好像每個人都在找什麼人的樣子。
Haoxiang
seem

meige
every

ren
person

dou
all

zai


zhao
seek

shenme
what

ren
person

de-yangzi
seem

‘It seems that everyone is looking for someone.’ (∀ > ∃, ∃ > ∀)
b. 好像每個人都在找一個人的樣子。

Haoxiang
seem

meige
every

ren
person

dou
all

zai


zhao
seek

yige
one

ren
person

de-yangzi
seem

‘It seems that everyone is looking for someone.’ (∀ > ∃, *∃ > ∀)

Why? Two prominent accounts hypothesize semantic scope-taking mechanisms in addition to a
syntactic mechanism like Quantifier Raising (May 1977) or Quantifying In (Montague 1974).

(3) Choice functions (Reinhart 1992, 1997; inter alia)
(4) Alternative sets (Hamblin 1973; Kratzer and Shimoyama 2002; Rooth 1985; Shimoyama

2001; sometimes used to implement unselective binding)

I have been arguing against such dichotomies between syntactic and semantic scope-taking, in
several ways.

(5) Incorrect interaction between two scope-taking mechanisms (Section 1)
(6) Missing generalizations that hold across all scope-taking, especially in binding (Section 2)
(7) Greater variation among quantifiers and languages than would be expected from a binary

distinction (Schwarz 2001; Shan 2003)

∗Thanks to Stuart Shieber, Chris Barker, Chris Potts, the southern New England workshop on semantics, the MIT
syntax-semantics reading group, and the reviewers of SALT 14 and NELS 35. This work is supported by the United
States National Science Foundation Grant BCS-0236592.

1

1 Alternatives and variables do not mix

(8) Plain-vanilla function application:
JβK (JγK) : B

JβK : 〈A, B〉 JγK : A
(9) Alice saw Xavier.

Alice saw Xavier : t

Alice : e
Alice

saw Xavier : 〈e, t〉

saw : 〈e, 〈e, t〉〉
saw

Xavier : e
Xavier

To add alternatives, replace each type A with the type 〈A, t〉, in other words, the type of A-sets.
Change the plain-vanilla function application rule (8) to:

(10) Alternative-friendly function application:{
f (x) | f ∈ JβK ∧ x ∈ JγK } : 〈B, t〉

JβK : 〈〈A, B〉, t〉 JγK : 〈A, t〉
(11) Who saw Xavier? (Alice did.)

{Alice saw Xavier,Barbara saw Xavier,Carol saw Xavier} : 〈t, t〉

{Alice,Barbara,Carol} : 〈e, t〉
who

{saw Xavier} : 〈〈e, t〉, t〉

{saw} : 〈〈e, 〈e, t〉〉, t〉
saw

{Xavier} : 〈e, t〉
Xavier

To add variables, replace each type A with the type 〈g, A〉, where g is the type of assignments.
Change the plain-vanilla function application rule (8) to:

(12) Variable-friendly function application:
λg. JβK (g)

(JγK (g)
)

: 〈g, B〉

JβK : 〈g, 〈A, B〉〉 JγK : 〈g, A〉
(13) Predicate abstraction (Heim and Kratzer 1998):

λg. λx. JβK (g[x/i]
)

: 〈g, 〈e, A〉〉

λi JβK : 〈g, A〉

2

(14) Alice saw nobody.
{Xavier 7→ Alice saw nobody,
Yves 7→ Alice saw nobody,
Zack 7→ Alice saw nobody} : 〈g, t〉

nobody {Xavier 7→ {Xavier 7→ Alice saw Xavier,
Yves 7→ Alice saw Yves,
Zack 7→ Alice saw Zack},

Yves 7→ {Xavier 7→ Alice saw Xavier,
Yves 7→ Alice saw Yves,
Zack 7→ Alice saw Zack},

Zack 7→ {Xavier 7→ Alice saw Xavier,
Yves 7→ Alice saw Yves,
Zack 7→ Alice saw Zack}} : 〈g, 〈e, t〉〉

λi {Xavier 7→ Alice saw Xavier,
Yves 7→ Alice saw Yves,
Zack 7→ Alice saw Zack} : 〈g, t〉

{Xavier 7→ Alice,
Yves 7→ Alice,
Zack 7→ Alice} : 〈g, e〉

Alice

{Xavier 7→ saw Xavier,
Yves 7→ saw Yves,
Zack 7→ saw Zack} : 〈g, 〈e, t〉〉

{Xavier 7→ saw,
Yves 7→ saw,
Zack 7→ saw} : 〈g, 〈e, 〈e, t〉〉〉

saw

{Xavier 7→ Xavier,
Yves 7→ Yves,
Zack 7→ Zack} : 〈g, e〉

ti

1.1 The problem

To mix alternatives and variables, replace each type A with 〈g, 〈A, t〉〉. The function application rule
is easy to update, but there is no predicate abstraction rule that produces the correct denotation.
(15) Alternative-friendly, variable-friendly function application (Kratzer and Shimoyama 2002):

λg.
{

f (x) | f ∈ JβK (g) ∧ x ∈ JγK (g)
}

: 〈g, 〈B, t〉〉

JβK : 〈g, 〈〈A, B〉, t〉〉 JγK : 〈g, 〈A, t〉〉
(16) Alternative-friendly predicate abstraction? ??? : 〈g, 〈〈e, A〉, t〉〉

λi JβK : 〈g, 〈A, t〉〉

3

To see this, consider a sentence with a wh-phrase and a quantifier:

(17) Who saw nobody? (Alice did.)
??? : 〈g, 〈〈e, t〉, t〉〉

λi {Xavier 7→ {Alice saw Xavier,Barbara saw Xavier,Carol saw Xavier},
Yves 7→ {Alice saw Yves,Barbara saw Yves,Carol saw Yves},
Zack 7→ {Alice saw Zack,Barbara saw Zack,Carol saw Zack}}

: 〈g, 〈t, t〉〉

{Xavier 7→ {Alice,Barbara,Carol},
Yves 7→ {Alice,Barbara,Carol},
Zack 7→ {Alice,Barbara,Carol}}

: 〈g, 〈e, t〉〉
who

{Xavier 7→ {saw Xavier},
Yves 7→ {saw Yves},
Zack 7→ {saw Zack}}

: 〈g, 〈〈e, t〉, t〉〉

{Xavier 7→ {saw},
Yves 7→ {saw},
Zack 7→ {saw}}
: 〈g, 〈〈e, 〈e, t〉〉, t〉〉

saw

{Xavier 7→ {Xavier},
Yves 7→ {Yves},
Zack 7→ {Zack}}

: 〈g, 〈e, t〉〉
ti

We want a constant function that maps every assignment to the following set of functions.

(18) {{X 7→ Alice saw X, Y 7→ Alice saw Y, Z 7→ Alice saw Z},
{X 7→ Barbara saw X, Y 7→ Barbara saw Y, Z 7→ Barbara saw Z},
{X 7→ Carol saw X, Y 7→ Carol saw Y, Z 7→ Carol saw Z}} : 〈〈e, t〉, t〉.

Predicate abstraction must “transpose” a function to sets (type 〈e, 〈t, t〉〉) into a set of functions
(type 〈〈e, t〉, t〉). But the denotation of the scope may as well be written

(19) {Xavier 7→ {Barbara saw Xavier,Alice saw Xavier,Carol saw Xavier},
Yves 7→ {Alice saw Yves,Carol saw Yves,Barbara saw Yves},
Zack 7→ {Carol saw Zack,Alice saw Zack,Barbara saw Zack}} : 〈g, 〈t, t〉〉,

whose “transpose” is not what we want predicate abstraction to produce:

(20) {{X 7→ Barbara saw X, Y 7→ Alice saw Y, Z 7→ Carol saw Z},
{X 7→ Alice saw X, Y 7→ Carol saw Y, Z 7→ Alice saw Z},
{X 7→ Carol saw X, Y 7→ Barbara saw Y, Z 7→ Barbara saw Z}} : 〈〈e, t〉, t〉

Kratzer and Shimoyama (2002) try to get around the problem by including every “transpose”:

(21) Kratzer and Shimoyama’s alternative-friendly predicate abstraction:
λg.
{

f〈e,A〉 | ∀xe. f (x) ∈ JβK (g[x/i]
) }

: 〈g, 〈〈e, A〉, t〉〉

λi JβK : 〈g, 〈A, t〉〉

4

(22) “There is a question about the correctness of [(21)]. It does not quite deliver the expected
set of functions. As far as we can see, however, no wrong predictions are actually made, as
long as we only use the definition for generating propositional alternatives.”

(23) Who saw nobody?
a. *Hisi mother saw nobodyi.
b. *Barbara didn’t see Xavier, Alice didn’t see Yves, and Carol didn’t see Zack.

(Another problem with the rule (21) occurs when one wh-phrase binds into another:

(24) Which mani sold which of hisi paintings?

If any individual has no painting, then Kratzer and Shimoyama predict that no answer is felicitous.
However, if Munch is under discussion, then Munch sold “The Scream” is a perfectly felicitous
answer. This problem is easy to fix: just change the rule to produce

(25) λg.
{

f〈e,A〉 | ∀xe.
(
f (x) ∈ JβK (g[x/i]

)) ∨ (f (x) is undefined and JβK (g[x/i]
)

is empty
) }

instead.)

1.2 Two solutions

Do it all in the syntax: Beghelli and Stowell 1997; Karttunen 1977.

Do it all in the semantics: Do not try to “transpose” a function to sets into a set of functions!
Generate a set of functions to start with. In general, generate a function to sets of functions to

(26) Which mani told nobody j about which of hisi paintings?

To analyze (26), binding by i must take place outside—yet binding by j must take place inside—the
alternative layer. Thus we must handle each binding separately, as variable-free semantics does.
Shan (2004) shows how to mix alternatives and binding properly, by extending Barker’s (2002)
integration of Jacobson’s variable-free semantics (1999, 2000) and Hendriks’s Flexible Types for
quantification (1988, 1993).

2 Choice functions do not cross over

(27) Every book that some professori wrote impressed all of heri students.
(28) ∃p. professor(p) ∧ ∀b.wrote(p, b)⇒∀s. student(s, p)⇒ impressed(b, s)
(29) ∃ f . choice-function(f) ∧ ∀b.wrote(f (professor), b)⇒∀s. student(s,her)⇒ impressed(b, s)

How does some professor bind her? Two possibilities:

(30) her is a paycheck pronoun just like some professor: her = f (professor)
(31) her is a paycheck pronoun bound by every book: her = ιp′.wrote(p′, b)

Must rule out (30) yet allow (31), in order to account for weak crossover.

(32) *Every book that shei wrote impressed all of some professor’si students.

5

Even though both paycheck denotations are contextually salient, f is a choice-function variable
whereas b is a λ-bound variable. Hence, stipulate that a paycheck pronoun must be bound by a
λ-bound variable, not a choice-function variable (cf. Büring 2004; Reinhart 1983). This stipu-
lation acknowledges that, in this respect, choice-function variables behave like traces rather than
pronouns in this respect, so existential closure of choice-function variables behaves like movement.

3 Conclusions

Beware the division of labor between syntax and semantics for scope-taking!

• Two scope-taking mechanisms must interact smoothly. Alternatives and variables do not.

• Constraints on binding, like crossover, may need to be restipulated, as for choice functions.

References
Barker, Chris. 2002. Remark on Jacobson 1999: Crossover as a local constraint. Linguistics and Philosophy. To appear.
Beghelli, Filippo, and Tim Stowell. 1997. Distributivity and negation: The syntax of each and every. In Ways of scope

taking, ed. Anna Szabolcsi, chap. 3, 71–107. Dordrecht: Kluwer.
Büring, Daniel. 2004. Crossover situations. Natural Language Semantics 12(1):23–62.
Hamblin, Charles Leonard. 1973. Questions in Montague English. Foundations of Language 10:41–53.
Heim, Irene, and Angelika Kratzer. 1998. Semantics in generative grammar. Oxford: Blackwell.
Hendriks, Herman. 1988. Type change in semantics: The scope of quantification and coordination. In Categories,

polymorphism and unification, ed. Ewan Klein and Johan van Benthem, 96–119. Centre for Cognitive Science,
University of Edinburgh.

———. 1993. Studied flexibility: Categories and types in syntax and semantics. Ph.D. thesis, University of Amsterdam.
Jacobson, Pauline. 1999. Towards a variable-free semantics. Linguistics and Philosophy 22(2):117–184.
———. 2000. Paycheck pronouns, Bach-Peters sentences, and variable-free semantics. Natural Language Semantics

8(2):77–155.
Karttunen, Lauri. 1977. Syntax and semantics of questions. Linguistics and Philosophy 1(1):3–44.
Kratzer, Angelika, and Junko Shimoyama. 2002. Indeterminate pronouns: The view from Japanese. In Proceedings

of the 3rd Tokyo conference on psycholinguistics, ed. Yukio Otsu, 1–25. Tokyo: Hituzi Syobo.
May, Robert C. 1977. The grammar of quantification. Ph.D. thesis, Massachusetts Institute of Technology.
Montague, Richard. 1974. The proper treatment of quantification in ordinary English. In Formal philosophy: Selected

papers of Richard Montague, ed. Richmond Thomason, 247–270. New Haven: Yale University Press.
Reinhart, Tanya. 1983. Anaphora and semantic interpretation. London: Croom Helm.
———. 1992. Wh-in-situ: An apparent paradox. In Proceedings of the 8th Amsterdam Colloquium, ed. Paul Dekker

and Martin Stokhof, 483–492. University of Amsterdam.
———. 1997. Quantifier scope: How labor is divided between QR and choice functions. Linguistics and Philosophy

20(4):335–397.
Rooth, Mats Edward. 1985. Association with focus. Ph.D. thesis, University of Massachusetts.
Schwarz, Bernard. 2001. Two kinds of long-distance indefinites. In Proceedings of the 13th Amsterdam Colloquium,

ed. Robert van Rooy and Martin Stokhof, 192–197. University of Amsterdam.
Shan, Chung-chieh. 2003. Quantifier strengths predict scopal possibilities of Mandarin Chinese wh-indefinites. Draft

manuscript, Harvard University; http://www.eecs.harvard.edu/~ccshan/mandarin/.
———. 2004. Binding alongside Hamblin alternatives calls for variable-free semantics. In Proceedings from Seman-

tics and Linguistic Theory XIV, ed. Kazuha Watanabe and Robert B. Young. Ithaca: Cornell University Press.
Shimoyama, Junko. 2001. Wh-constructions in Japanese. Ph.D. thesis, University of Massachusetts.

6

