
Finally Tagless, Partially Evaluated?

Tagless Staged Interpreters for Simpler Typed Languages

Jacques Carette1, Oleg Kiselyov2, and Chung-chieh Shan3

1 McMaster University carette@mcmaster.ca
2 FNMOC oleg@pobox.com

3 Rutgers University ccshan@rutgers.edu

Abstract. We have built the first family of tagless interpretations for a
higher-order typed object language in a typed metalanguage (Haskell or
ML) that require no dependent types, generalized algebraic data types,
or postprocessing to eliminate tags. The statically type-preserving in-
terpretations include an evaluator, a compiler (or staged evaluator), a
partial evaluator, and call-by-name and call-by-value CPS transformers.

Our main idea is to encode HOAS using cogen functions rather than
data constructors. In other words, we represent object terms not in an
initial algebra but using the coalgebraic structure of the λ-calculus. Our
representation also simulates inductive maps from types to types, which
are required for typed partial evaluation and CPS transformations.

Our encoding of an object term abstracts over the various ways to
interpret it, yet statically assures that the interpreters never get stuck.
To achieve self-interpretation and show Jones-optimality, we relate this
exemplar of higher-rank and higher-kind polymorphism to plugging a
term into a context of let-polymorphic bindings.

It should also be possible to define languages with a highly refined syntactic
type structure. Ideally, such a treatment should be metacircular, in the sense
that the type structure used in the defined language should be adequate for
the defining language. John Reynolds [28]

1 Introduction

A popular way to define and implement a language is to embed it in another [28].
Embedding means to represent terms and values of the object language as terms
and values in the metalanguage. Embedding is especially appropriate for domain-
specific object languages because it supports rapid prototyping and integration
with the host environment [16]. If the metalanguage supports staging, then the
embedding can compile object programs to the metalanguage and avoid the
overhead of interpreting them on the fly [23]. A staged definitional interpreter is
thus a promising way to build a domain-specific language (DSL).

? We thank Martin Sulzmann and Walid Taha for helpful discussions. Sam Staton,
Pieter Hofstra, and Bart Jacobs kindly provided some useful references. We thank
anonymous reviewers for pointers to related work.

[x : t1]
···

e : t2

λx. e : t1→ t2

[f : t1→ t2]
···

e : t1→ t2

fix f. e : t1→ t2

e1 : t1→ t2 e2 : t1

e1e2 : t2

n is an integer

n : Z

b is a boolean

b : B
e : B e1 : t e2 : t

if e then e1 else e2 : t

e1 : Z e2 : Z
e1 + e2 : Z

e1 : Z e2 : Z
e1 × e2 : Z

e1 : Z e2 : Z
e1 ≤ e2 : B

Fig. 1. Our typed object language

We focus on embedding a typed object language into a typed metalanguage.
The benefit of types in this setting is to rule out meaningless object terms, thus
enabling faster interpretation and assuring that our interpreters do not get stuck.
To be concrete, we use the typed object language in Figure 1 throughout this pa-
per. We aim not just for evaluation of object programs but also for compilation,
partial evaluation, and other processing.

Pašalić et al. [23] and Xi et al. [37] motivated interpreting a typed object
language in a typed metalanguage as an interesting problem. The common so-
lutions to this problem store object terms and values in the metalanguage in
a universal type, a generalized algebraic data type (GADT), or a dependent
type. In the remainder of this section, we discuss these solutions, identify their
drawbacks, then summarize our proposal and contributions. We leave aside the
solved problem of writing a parser/type-checker, for embedding object language
objects into the metalanguage (whether using dependent types [23] or not [2]),
and just enter them by hand.

1.1 The tag problem

It is straightforward to create an algebraic data type, say in OCaml, Fig. 2(a),
to represent object terms such as those in Figure 1. For brevity, we elide treating
integers, conditionals, and fixpoint in this section. We represent each variable
using a unary de Bruijn index.4 For example, we represent the object term
(λx. x) true as let test1 = A (L (V VZ), B true).

(a) type var = VZ | VS of var

type exp = V of var | B of bool | L of exp | A of exp * exp

(b) let rec lookup (x::env) = function VZ -> x | VS v -> lookup env v

let rec eval0 env = function

| V v -> lookup env v

| B b -> b

| L e -> fun x -> eval0 (x::env) e

| A (e1,e2) -> (eval0 env e1) (eval0 env e2)

(c) type u = UB of bool | UA of (u -> u)

(d) let rec eval env = function

| V v -> lookup env v

| B b -> UB b

| L e -> UA (fun x -> eval (x::env) e)

| A (e1,e2) -> match eval env e1 with UA f -> f (eval env e2)

Fig. 2. OCaml code illustrating the tag problem

4 We use de Bruijn indices to simplify the comparison with Pašalić et al.’s work [23].

Following [23], we try to implement an interpreter function eval0, Fig. 2(b).
It takes an object term such as test1 above and gives us its value. The first
argument to eval0 is the environment, initially empty, which is the list of values
bound to free variables in the interpreted code. If our OCaml-like metalanguage
were untyped, the code above would be acceptable. The L e line exhibits in-
terpretive overhead: eval0 traverses the function body e every time (the result
of evaluating) L e is applied. Staging can be used to remove this interpretive
overhead [23, §1.1–2].

However, the function eval0 is ill-typed if we use OCaml or some other typed
language as the metalanguage. The line B b says that eval0 returns a boolean,
whereas the next line L e says the result is a function, but all branches of a
pattern-match form must yield values of the same type. A related problem is
the type of the environment env: a regular OCaml list cannot hold both boolean
and function values.

The usual solution is to introduce a universal type [23, §1.3] containing
both booleans and functions, Fig. 2(c). We can then write a typed interpreter,
Fig. 2(d), whose inferred type is u list -> exp -> u. Now we can evaluate
eval [] test1 obtaining UB true. The unfortunate tag UB in the result re-
flects that eval is a partial function. First, the pattern match with UA f in
the line A (e1,e2) is not exhaustive, so eval can fail if we apply a boolean,
as in the ill-typed term A (B true, B false). Second, the lookup function as-
sumes a nonempty environment, so eval can fail if we evaluate an open term
A (L (V (VS VZ)), B true). After all, the type exp represents object terms
both well-typed and ill-typed, both open and closed.

If we evaluate only closed terms that have been type-checked, then eval
would never fail. Alas, this soundness is not obvious to the metalanguage, whose
type system we must still appease with the nonexhaustive pattern matching in
lookup and eval and the tags UB and UA [23, §1.4]. In other words, the algebraic
data types above fail to express in the metalanguage that the object program is
well-typed. This failure necessitates tagging and nonexhaustive pattern-match-
ing operations that incur a performance penalty in interpretation [23] and impair
optimality in partial evaluation [33]. In short, the universal-type solution is un-
satisfactory because it does not preserve typing.

It is commonly thought that to interpret a typed object language in a typed
metalanguage while preserving types is difficult and requires GADTs or depen-
dent types [33]. In fact, this problem motivated much work on GADTs [24, 37]
and on dependent types [11, 23]. Yet other type systems have been proposed to
distinguish closed terms like test1 from open terms [9, 21, 34], so that lookup
never receives an empty environment. We discuss these proposals further in §5.

1.2 Our final proposal

We represent object programs using ordinary functions rather than data con-
structors. These functions comprise the entire interpreter, shown below.

let varZ env = fst env let b (bv:bool) env = bv

let varS vp env = vp (snd env) let lam e env = fun x -> e (x,env)

let app e1 e2 env = (e1 env) (e2 env)

We now represent our sample term (λx. x) true as let testf1 = app (lam
varZ) (b true). This representation is almost the same as in §1.1, only written
with lowercase identifiers. To evaluate an object term is to apply its representa-
tion to the empty environment, testf1 (), obtaining true. The result has no
tags: the interpreter patently uses no tags and no pattern matching. The term
b true evaluates to a boolean and the term lam varZ evaluates to a function,
both untagged. The app function applies lam varZ without pattern matching.
What is more, evaluating an open term such as app (lam (varS varZ)) (b
true) gives a type error rather than a run-time error. The type error correctly
complains that the initial environment should be a tuple rather than (). In other
words, the term is open.

In sum, by Church-encoding terms using ordinary functions, we achieve a
tagless evaluator for a typed object language in a metalanguage with a sim-
ple Hindley-Milner type system. In this final rather than initial approach, both
kinds of run-time errors in §1.1 (applying a nonfunction and evaluating an open
term) are reported at compile time. Because the new interpreter uses no univer-
sal type or pattern matching, it never results in a run-time error, and is in fact
total. Because this safety is obvious not just to us but also to the metalanguage
implementation, we avoid the serious performance penalty [23] of error check-
ing. Glück [12] explains deeper technical reasons that inevitably lead to these
performance penalties.

Our solution is not Church-encoding the universal type. The Church encod-
ing of the type u in §1.1 requires two continuations; the function app in the
interpreter above would have to provide both to the encoding of e1. The contin-
uation corresponding to the UB case of u must either raise an error or loop. For
a well-typed object term, that error continuation is never invoked, yet it must
be supplied. In contrast, our interpreter has no error continuation at all.

The evaluator above is wired directly into the functions b, lam, app, and so
on. We explain how to abstract the interpreter so as to process the same term in
many other ways: compilation, partial evaluation, CPS conversion, and so forth.

1.3 Contributions

The term “constructor” functions b, lam, app, and so on appear free in the encod-
ing of an object term such as testf1 above. Defining these functions differently
gives rise to different interpreters, that is, different folds on object programs.
Given the same term representation but varying the interpreter, we can

– evaluate the term to a value in the metalanguage;
– measure the size or depth of the term;
– compile the term, with staging support such as in MetaOCaml;
– partially evaluate the term, online; and
– transform the term to continuation-passing style (CPS), even call-by-name

(CBN) CPS, so as to isolate the evaluation order of the object language from
that of the metalanguage.5

5 Due to serious lack of space, we refer the reader to the accompanying code for this.

We have programmed our interpreters in OCaml (and, for staging, MetaOCaml
[19]) and standard Haskell. The complete code is available at http://okmij.
org/ftp/packages/tagless-final.tar.gz to supplement the paper. For sim-
plicity, main examples in the paper will be in MetaOCaml; all examples have
also been implemented in Haskell.

We attack the problem of tagless (staged) typed-preserving interpretation
exactly as it was posed by Pašalić et al. [23] and Xi et al. [37]. We use their
running examples and achieve the result they call desirable. Our contributions
are as follows.

1. We build interpreters that evaluate (§2), compile (or evaluate with staging)
(§3), and partially evaluate (§4) a typed higher-order object language in a
typed metalanguage, in direct and continuation-passing styles.

2. All these interpreters use no type tags, patently never get stuck, and need
no advanced type-system features such as GADTs, dependent types, or in-
tentional type analysis.

3. The partial evaluator avoids polymorphic lift and delays binding-time anal-
ysis. It bakes a type-to-type map into the interpreter interface to eliminate
the need for GADTs and thus remain portable across Haskell 98 and ML.

4. We use the type system of the metalanguage to check statically that an
object program is well-typed and closed.

5. We show clean, comparable implementations in MetaOCaml and Haskell.
6. We specify a functor signature that encompasses all our interpreters, from

evaluation and compilation (§2) to partial evaluation (§4).
7. We point a clear way to extend the object language with more features such

as state.6

8. We describe an approach to self-interpretation compatible with the above.
Self-interpretation turned out to be harder than expected.6

Our code is surprisingly simple and obvious in hindsight, but it has been cited as
a difficult problem ([32] notwithstanding) to interpret a typed object language in
a typed metalanguage without tagging or type-system extensions. For example,
Taha et al. [33] say that “expressing such an interpreter in a statically typed
programming language is a rather subtle matter. In fact, it is only recently that
some work on programming type-indexed values in ML [38] has given a hint of
how such a function can be expressed.” We discuss related work in §5.

To reiterate, we do not propose any new language feature or new technique.
We use features already present in mainstream functional languages—Hindley-
Milner type system with either an inference-preserving module system or con-
structor classes, as realized in ML and Haskell 98—and techniques which have
all appeared in the literature (in particular, [32, 38]), to solve a problem that
was stated in the published record as unsolved and likely unsolvable in ML or
Haskell 98 without extensions. The simplicity of our solution and its use of only
mainstream features make it more practical to build typed, embedded DSLs.

6 Again, please see our code.

2 The object language and its tagless interpreters

Figure 1 shows our object language, a simply-typed λ-calculus with fixpoint, in-
tegers, booleans, and comparison. The language is close to Xi et al.’s [37], without
their polymorphic lift but with more constants so as to more conveniently ex-
press Fibonacci, factorial, and power. In contrast to §1, we encode binding using
higher-order abstract syntax (HOAS) [20, 25] rather than de Bruijn indices. This
makes the encoding convenient and ensures that our object programs are closed.

2.1 How to make encoding flexible: abstract the interpreter

We embed our language in (Meta)OCaml and Haskell. In Haskell, the functions
that construct object terms are methods in a type class Symantics (with a
parameter repr of kind * -> *), Fig. 3(a). The class is so named because its
interface gives the syntax of the object language and its instances give the seman-
tics. For example, we encode the term test1, or (λx. x) true, from §1.1 above as
app (lam (\x -> x)) (bool True), whose inferred type is Symantics repr
=> repr Bool. For another example, the classical power function is in Fig. 3(b)
and the partial application λx. power x 7 is in Fig. 3(c). The dummy argu-
ment () above is to avoid the monomorphism restriction, to keep the type of
testpowfix and testpowfix7 polymorphic in repr. The methods add, mul, and
leq are quite similar, and so are int and bool. Therefore, we often show only
one method of each group and elide the rest. The accompanying code has the
complete implementations.
(a) class Symantics repr where

int :: Int -> repr Int; bool :: Bool -> repr Bool

lam :: (repr a -> repr b) -> repr (a -> b)

app :: repr (a -> b) -> repr a -> repr b

fix :: (repr a -> repr a) -> repr a

add :: repr Int -> repr Int -> repr Int

mul :: repr Int -> repr Int -> repr Int

leq :: repr Int -> repr Int -> repr Bool

if_ :: repr Bool -> repr a -> repr a -> repr a

(b) testpowfix () = lam (\x -> fix (\self -> lam (\n ->

if_ (leq n (int 0)) (int 1)

(mul x (app self (add n (int (-1))))))))

(c) testpowfix7 () = lam (\x -> app (app (testpowfix ()) x) (int 7))

Fig. 3. Symantics in Haskell

Comparing Symantics with Fig. 1 shows how to represent every typed, closed
object term in the metalanguage. Moreover, the representation preserves types.

Proposition 1. If an object term has the object type t, then its representation
in the metalanguage has the type forall repr. Symantics repr => repr t.

Conversely, the type system of the metalanguage statically checks that the rep-
resented object term is well-typed and closed. If we err, say replace int 7 with
bool True in testpowfix7, Haskell will complain there that the expected type
Int does not match the inferred Bool. Similarly, the object term λx. xx and

module type Symantics = sig type (’c, ’dv) repr

val int : int -> (’c, int) repr

val bool: bool -> (’c, bool) repr

val lam : ((’c, ’da) repr -> (’c, ’db) repr) -> (’c, ’da -> ’db) repr

val app : (’c, ’da -> ’db) repr -> (’c, ’da) repr -> (’c, ’db) repr

val fix : (’x -> ’x) -> ((’c, ’da -> ’db) repr as ’x)

val add : (’c, int) repr -> (’c, int) repr -> (’c, int) repr

val mul : (’c, int) repr -> (’c, int) repr -> (’c, int) repr

val leq : (’c, int) repr -> (’c, int) repr -> (’c, bool) repr

val if_ : (’c, bool) repr

-> (unit -> ’x) -> (unit -> ’x) -> ((’c, ’da) repr as ’x)

end

module EX(S: Symantics) = struct open S

let test1 () = app (lam (fun x -> x)) (bool true)

let testpowfix () =

lam (fun x -> fix (fun self -> lam (fun n ->

if_ (leq n (int 0)) (fun () -> int 1)

(fun () -> mul x (app self (add n (int (-1))))))))

let testpowfix7 = lam (fun x -> app (app (testpowfix ()) x) (int 7))

end

Fig. 4. A simple (Meta)OCaml embedding of our object language, and examples

its encoding lam (\x -> app x x) both fail occurs-checks in type checking.
Haskell’s type checker also flags syntactically invalid object terms, such as if we
forget app somewhere above.

To embed the same object language in (Meta)OCaml, we replace the type
class Symantics and its instances by a module signature Symantics and its
implementations. Figure 4 shows a simple signature that suffices until §4. The
two differences are: the additional type parameter ’c, an environment classifier
[34] required by MetaOCaml for code generation in §3; and the η-expanded type
for fix and thunk types in if_ since OCaml is a call-by-value language.

The functor EX in Fig. 4 encodes our running examples test1 and the power
function (testpowfix). The dummy argument to test1 and testpowfix is an
artifact of MetaOCaml, related to monomorphism: in order for us to run a piece
of generated code, it must be polymorphic in its environment classifier (the type
variable ’c in Figure 4). The value restriction dictates that the definitions of our
object terms must look syntactically like values. (Alternatively, we could have
used the rank-2 record types of OCaml to maintain the necessary polymorphism.)
Thus, we represent an object expression in OCaml as a functor from Symantics
to an appropriate semantic domain. This is essentially the same as the constraint
Symantics repr => in the Haskell embedding.

2.2 Two tagless interpreters

Having abstracted our term representation over the interpreter, we are now
ready to present a series of interpreters. Each interpreter is an instance of the
Symantics class in Haskell and a module implementing the Symantics signature
in MetaOCaml.

The first interpreter evaluates an object term to its value in the meta-
language. The module below interprets each object-language operation as the
corresponding metalanguage operation.

module R = struct type (’c,’dv) repr = ’dv (* no wrappers *)

let int (x:int) = x let bool (b:bool) = b

let lam f = f let app e1 e2 = e1 e2

let fix f = let rec self n = f self n in self

let add e1 e2 = e1 + e2 let mul e1 e2 = e1 * e2

let leq x y = x <= y

let if_ eb et ee = if eb then et () else ee () end

As in §1.2, this interpreter is patently tagless, using neither a universal type
nor any pattern matching: the operation add is really OCaml’s addition, and
app is OCaml’s application. To run our examples, we instantiate the EX functor
from §2.1 with R: module EXR = EX(R). Thus, EXR.test1 () evaluates to the
untagged boolean value true. It is obvious to the compiler that pattern matching
cannot fail, because there is no pattern matching. Evaluation can only fail to
yield a value due to interpreting fix. (The source code shows a total interpreter
L that measures the size of each object term.) We can also generalize from R to
all interpreters; these propositions follow immediately from the soundness of the
metalanguage’s type system.

Proposition 2. If an object term e encoded in the metalanguage has type t,
then evaluating e in the interpreter R either continues indefinitely or terminates
with a value of the same type t.

Proposition 3. If an implementation of Symantics never gets stuck, then the
type system of the object language is sound with respect to the dynamic semantics
defined by that implementation.

3 A tagless compiler (or, a staged interpreter)

Besides immediate evaluation, we can compile our object language into OCaml
code using MetaOCaml’s staging facilities. MetaOCaml represents future-stage
expressions of type t as values of type (’c, t) code, where ’c is the environment
classifier [6, 34]. Code values are created by a bracket form .<e>., which quotes
the expression e for evaluation at a future stage. The escape .~e must occur
within a bracket and specifies that the expression e must be evaluated at the
current stage; its result, which must be a code value, is spliced into the code
being built by the enclosing bracket. The run form .!e evaluates the future-
stage code value e by compiling and linking it at run time. Bracket, escape, and
run are akin to quasi-quotation, unquotation, and eval of Lisp.

Inserting brackets and escapes appropriately into the evaluator R above yields
the simple compiler C in Fig. 5(a). This is a straightforward staging of module R.
This compiler produces unoptimized code. For example, interpreting our test1
with Fig. 5(b) gives the code value .<(fun x_6 -> x_6) true>. of inferred type
(’c, bool) C.repr. Interpreting testpowfix7 with Fig. 5(c) gives a code value
with many apparent β- and η-redexes, Fig. 5(d). This compiler does not incur

(a) module C = struct type (’c,’dv) repr = (’c,’dv) code

let int (x:int) = .<x>. let bool (b:bool) = ..

let lam f = .<fun x -> .~(f .<x>.)>.

let app e1 e2 = .<.~e1 .~e2>.

let fix f = .<let rec self n = .~(f .<self>.) n in self>.

let add e1 e2 = .<.~e1 + .~e2>. let mul e1 e2 = .<.~e1 * .~e2>.

let leq x y = .<.~x <= .~y>.

let if_ eb et ee = .<if .~eb then .~(et ()) else .~(ee ())>. end

(b) let module E = EX(C) in E.test1 ()

(c) let module E = EX(C) in E.testpowfix7

(d) .<fun x_1 -> (fun x_2 -> let rec self_3 = fun n_4 ->

(fun x_5 -> if x_5 <= 0 then 1 else x_2 * self_3 (x_5 + (-1)))

n_4 in self_3) x_1 7>.

Fig. 5. The tagless staged interpreter C

any interpretive overhead: the code produced for λx. x is simply fun x_6 -> x_6.
The resulting code obviously contains no tags and no pattern matching. The en-
vironment classifiers here, like the tuple types in §1.2, make it a type error to run
an open expression. The accompanying code shows the Haskell implementation.

4 A tagless partial evaluator

Surprisingly, we can write a partial evaluator using the idea above, namely to
build object terms using ordinary functions rather than data constructors. We
present this partial evaluator in a sequence of three attempts. It uses no universal
type and no tags for object types. We then discuss residualization and binding-
time analysis. Our partial evaluator is a modular extension of the evaluator
in §2.2 and the compiler in §3, in that it uses the former to reduce static terms
and the latter to build dynamic terms.

4.1 Avoiding polymorphic lift

Roughly, a partial evaluator interprets each object term to yield either a static
(present-stage) term (using R) or a dynamic (future-stage) term (using C). To dis-
tinguish between static and dynamic terms, we might try to define repr in the
partial evaluator as type (’c,’dv) repr = S0 of (’c,’dv) R.repr | E0 of
(’c,’dv) C.repr. Integer and boolean literals are immediate, present-stage val-
ues. Addition yields a static term (using R.add) if and only if both operands are
static; otherwise we extract the dynamic terms from the operands and add them
using C.add. We use C.int to convert from the static term (’c,int) R.repr,
which is just int, to the dynamic term.

Whereas mul and leq are as easy to define as add, we encounter a problem
with if_. Suppose that the first argument to if_ is a dynamic term (of type
(’c,bool) C.repr), the second a static term (of type (’c,’a) R.repr), and
the third a dynamic term (of type (’c,’a) C.repr). We then need to convert
the static term to dynamic, but there is no polymorphic “lift” function, of type
’a -> (’c,’a) C.repr, to send a value to the future stage [34, 37].

Our Symantics only includes separate lifting methods bool and int, not
a parametrically polymorphic lifting method, for good reason: When compiling

to a first-order target language such as machine code, booleans, integers, and
functions may well be represented differently. Thus, compiling polymorphic lift
requires intensional type analysis. To avoid needing polymorphic lift, we turn to
Asai’s technique [1, 32]: build a dynamic term alongside every static term.

4.2 Delaying binding-time analysis

We switch to the data type type (’c,’dv) repr = P1 of (’c,’dv) R.repr
option * (’c,’dv) C.repr so that a partially evaluated term always contains a
dynamic component and sometimes contains a static component. By distributiv-
ity, the two alternative constructors of an option value, Some and None, tag each
partially evaluated term with a phase: either present or future. This tag is not an
object type tag: all pattern matching below is exhaustive. Because the future-
stage component is always present, we can now define the polymorphic func-
tion let abstr1 (P1 (_,dyn)) = dyn of type (’c,’dv) repr -> (’c,’dv)
C.repr to extract it without requiring polymorphic lift into C. We then try to
define the interpreter P1—and get as far as the first-order constructs of our
object language, including if_.

module P1 : Symantics = struct

let int (x:int) = P1 (Some (R.int x), C.int x)

let add e1 e2 = match (e1,e2) with

| (P1 (Some n1,_),P1 (Some n2,_)) -> int (R.add n1 n2)

| _ -> P1 (None,(C.add (abstr1 e1) (abstr1 e2)))

let if_ = function

| P1 (Some s,_) -> fun et ee -> if s then et () else ee ()

| eb -> fun et ee -> P1 (None, C.if_ (abstr1 eb)

(fun () -> abstr1 (et ()))

(fun () -> abstr1 (ee ())))

However, we stumble on functions. According to our definition of P1, a partially
evaluated object function, such as the identity λx. x embedded in OCaml as
lam (fun x -> x) : (’c,’a->’a) P1.repr, consists of a dynamic part (type
(’c,’a->’a) C.repr) and maybe a static part (type (’c,’a->’a) R.repr).
The dynamic part is useful when this function is passed to another function that
is only dynamically known, as in λk. k(λx. x). The static part is useful when
this function is applied to a static argument, as in (λx. x) true. Neither part,
however, lets us partially evaluate the function, that is, compute as much as
possible statically when it is applied to a mix of static and dynamic inputs. For
example, the partial evaluator should turn λn. (λx. x)n into λn. n by substituting
n for x in the body of λx. x even though n is not statically known. The same
static function, applied to different static arguments, can give both static and
dynamic results: we want to simplify (λy. x× y)0 to 0 but (λy. x× y)1 to x.

To enable these simplifications, we delay binding-time analysis for a static
function until it is applied, that is, until lam f appears as the argument of app.
To do so, we have to incorporate f as it is into the P1.repr data structure: the
representation for a function type ’a->’b should be one of

S1 of (’c,’a) repr -> (’c,’b) repr | E1 of (’c,’a->’b) C.repr

P1 of ((’c,’a) repr -> (’c,’b) repr) option * (’c,’a->’b) C.repr

unlike P1.repr of int or bool. That is, we need a nonparametric data type,
something akin to type-indexed functions and type-indexed types, which Oliveira
and Gibbons [22] dub the typecase design pattern. Thus, typed partial evaluation,
like typed CPS transformation, inductively defines a map from source types
to target types that performs case distinction on the source type. In Haskell,
typecase can be equivalently implemented either with GADTs or with type-class
functional dependencies [22]. The accompanying code shows both approaches,
neither portable to OCaml. In addition, the problem of nonexhaustive pattern-
matching reappears in the GADT approach because GHC 6.6.1 cannot see that
a particular type of a GADT value precludes certain constructors. Thus GADTs
fail to make it syntactically apparent that pattern matching is exhaustive.

4.3 The “final” solution

Let us re-examine the problem in §4.2. What we would ideally like is to
write type (’c,’dv) repr = P1 of (repr pe (’c,’dv)) R.repr option *
(’c,’dv) C.repr where repr_pe is the type function defined by

repr_pe (’c,int) = (’c,int); repr_pe (’c,bool) = (’c,bool)

repr_pe (’c,’a->’b) = (’c,’a) repr -> (’c,’b) repr

Although we can use type classes to define this type function in Haskell, that is
not portable to MetaOCaml. However, these three typecase alternatives are al-
ready present in existing methods of Symantics. A simple and portable solution
thus emerges: we bake repr_pe into the signature Symantics. We recall from
Figure 4 in §2.1 that the repr type constructor took two arguments ’c and ’dv.
We add an argument ’sv for the result of applying repr_pe to ’dv. Figure 6
shows the new signature.
module type Symantics = sig type (’c,’sv,’dv) repr

val int : int -> (’c,int,int) repr

val lam : ((’c,’sa,’da) repr -> (’c,’sb,’db) repr as ’x)

-> (’c,’x,’da -> ’db) repr

val app : (’c,’x,’da -> ’db) repr

-> ((’c,’sa,’da) repr -> (’c,’sb,’db) repr as ’x)

val fix : (’x -> ’x) -> ((’c, (’c,’sa,’da) repr -> (’c,’sb,’db) repr,

’da -> ’db) repr as ’x)

val add : (’c,int,int) repr -> (’c,int,int) repr -> (’c,int,int) repr

val if_ : (’c,bool,bool) repr

-> (unit->’x) -> (unit->’x) -> ((’c,’sa,’da) repr as ’x) end

Fig. 6. A (Meta)OCaml embedding of our object language that supports partial eval-
uation (bool, mul, leq are elided)

The interpreters R, L and C above only use the old type arguments ’c and ’dv,
which are treated by the new signature in the same way. Hence, all that needs
to change in these interpreters to match the new signature is to add a phantom
type argument ’sv to repr. For example, the compiler C now begins module C
= struct type (’c,’sv,’dv) repr = (’c,’dv) code with the rest the same.
In contrast, the partial evaluator P relies on the type argument ’sv.

Figure 7 shows the partial evaluator P. Its type repr literally expresses the
type equation for repr_pe above. The function abstr extracts a future-stage

module P = struct

type (’c,’sv,’dv) repr = {st: ’sv option; dy: (’c,’dv) code}

let abstr {dy = x} = x let pdyn x = {st = None; dy = x}

let int (x:int) = {st = Some (R.int x); dy = C.int x}

let add e1 e2 = match e1, e2 with

| {st = Some 0}, e | e, {st = Some 0} -> e

| {st = Some m}, {st = Some n} -> int (R.add m n)

| _ -> pdyn (C.add (abstr e1) (abstr e2))

let if_ eb et ee = match eb with

| {st = Some b} -> if b then et () else ee ()

| _ -> pdyn (C.if_ (abstr eb) (fun () -> abstr (et ()))

(fun () -> abstr (ee ())))

let lam f = {st = Some f; dy = C.lam (fun x -> abstr (f (pdyn x)))}

let app ef ea = match ef with {st = Some f} -> f ea

| _ -> pdyn (C.app (abstr ef) (abstr ea)) end

Fig. 7. Our partial evaluator (bool, mul, leq and fix are elided)

code value from the result of partial evaluation. Conversely, the function pdyn
injects a code value into the repr type. As in §4.2, we build dynamic terms
alongside any static ones to avoid polymorphic lift.

The static portion of the interpretation of lam f is Some f, which just wraps
the HOAS function f. The interpretation of app ef ea checks to see if ef is
such a wrapped HOAS function. If it is, we apply f to the concrete argument
ea, giving us a chance to perform static computations (see the example below).
If ef has only a dynamic part, we residualize.

To illustrate how to add optimizations, we improve add (and mul, elided) to
simplify the generated code using the monoid (and ring) structure of int: not
only is addition performed statically (using R) when both operands are statically
known, but it is eliminated when one operand is statically 0; similarly for multi-
plication by 0 or 1. Such optimizations can be quite effective in a large language
with more base types and primitive operations.

Any partial evaluator must decide how much to unfold recursion. Our code
näıvely unfolds fix whenever the argument is static. In the accompanying source
code is a conservative alternative P.fix that unfolds recursion only once, then
residualizes. Many sophisticated approaches have been developed to decide how
much to unfold [17], but this issue is orthogonal to our presentation.

Given this implementation of P, our running example let module E = EX(P)
in E.test1 () evaluates to {P.st = Some true; P.dy = .<true>.} of type
(’a, bool, bool) P.repr. Unlike with C in §3, a β-reduction has been stati-
cally performed to yield true. More interestingly, whereas testpowfix7 compiles
to a code value with many β-redexes in §3, the partial evaluation let module
E = EX(P) in E.testpowfix7 gives the desired result

{P.st = Some <fun>;
P.dy = .<fun x -> x * (x * (x * (x * (x * (x * x)))))>.}

All pattern-matching in P is syntactically exhaustive, so it is patent to the meta-
language implementation that P never gets stuck. Further, all pattern-matching
occurs during partial evaluation, only to check if a value is known statically,

never what type it has. In other words, our partial evaluator tags phases (with
Some and None) but not object types.

5 Related work

Our initial motivation came from several papers [23, 24, 33, 37] that use em-
bedded interpreters to justify advanced type systems, in particular GADTs. We
admire all this technical machinery, but these motivating examples do not need
it. Although GADTs may indeed be simpler and more flexible, they are un-
available in mainstream ML, and their implementation in GHC 6.6.1 fails to
detect exhaustive pattern matching. We also wanted to find the minimal set of
widespread language features needed for tagless type-preserving interpretation.

Even a simply typed λ-calculus obviously supports self-interpretation, pro-
vided we use universal types [33]. The ensuing tagging overhead motivated Taha
et al. [33] to propose tag elimination, which however does not statically guarantee
that all tags will be removed [23].

Pašalić et al. [23], Taha et al. [33], Xi et al. [37], and Peyton Jones et al.
[24] seem to argue as follows that a self-interpreter of a typed language cannot
be tagless or Jones-optimal: (1) One needs to encode a typed language in a
typed language based on a sum type (at some level of the hierarchy); (2) A direct
interpreter for such an encoding of a typed language in a typed language requires
either advanced types or tagging overhead; (3) Thus, an indirect interpreter is
necessary, which needs a universal type and hence tagging. While the logic is
sound, we (following Yang [38]) showed that the first step’s premise is not valid.

Danvy and López [8] discuss Jones optimality at length and apply HOAS to
typed self-interpretation. However, their source language is untyped. Therefore,
their object-term encoding has tags, and their interpreter can raise run-time
errors. Nevertheless, HOAS lets the partial evaluator remove all the tags. In
contrast, our object encoding and interpreters do not have tags to start with
and obviously cannot raise run-time errors.

Our partial evaluator establishes a bijection repr_pe between static and dy-
namic types (the valid values of ’sv and ’dv), and between static and dynamic
terms. It is customary to implement such a bijection using an injection-projec-
tion pair, as done for interpreters [4, 27], partial evaluation [7], and type-level
functions [22]. As explained in §4.3, we avoid injection and projection at the
type level by adding an argument to repr. Our solution could have been even
more straightforward if MetaOCaml provided total type-level functions such as
repr_pe in §4.3—simple type-level computations ought to become mainstream.

At the term level, we also avoid converting between static and dynamic terms
by building them in parallel, using Asai’s method [1]. This method type-checks
in Hindley-Milner once we deforest the object term representation. Put another
way, we manual apply type-level partial evaluation to our type functions (see
§4.3) to obtain simpler types acceptable to MetaOCaml.

Sumii and Kobayashi [32] also use Asai’s method, to combine online and
offline partial evaluation. They predate us in deforesting the object term repre-
sentation to enable tagless partial evaluation. We strive for modularity by reusing
interpreters for individual stages [31]: our partial evaluator P reuses our tagless

evaluator R and tagless compiler C, so it is patent that the output of P never gets
stuck. It would be interesting to try to derive a cogen [35] in the same manner.

It is common to implement an embedded DSL by providing multiple inter-
pretations of host-language pervasives such as addition and application. It is also
common to use phantom types to rule out ill-typed object terms, as done in Lava
[5] and by Rhiger [29]. However, these approaches are not tagless because they
still use universal types, such as Lava’s Bit and NumSig, and Rhiger’s Raw (his
Fig. 2.2) and Term (his Chap. 3), which incur the attendant overhead of pat-
tern matching. The universal type also greatly complicates the soundness and
completeness proofs of embedding [29], whereas our proofs are trivial. Rhiger’s
approach does not support typed CPS transformation (his §3.3.4).

We are not the first to implement a typed interpreter for a typed language.
Läufer and Odersky [18] use type classes to implement a metacircular interpreter
(rather than a self-interpreter) of a typed version of the SK language, which is
quite different from our object language. Their interpreter appears to be tagless,
but they could not have implemented a compiler or partial evaluator in the same
way, since they rely heavily on injection-projection pairs.

Fiore [10] and Balat et al. [3] also build a tagless partial evaluator, using
delimited control operators. It is type-directed, so the user must represent, as a
term, the type of every term to be partially evaluated. We shift this work to the
type checker of the metalanguage. By avoiding term-level type representations,
our approach makes it easier to perform algebraic simplifications (as in §4.3).

We encode terms in elimination form, as a coalgebraic structure. Pfenning
and Lee [26] first described this basic idea and applied it to metacircular inter-
pretation. Our approach, however, can be implemented in mainstream ML and
supports type inference, typed CPS transformation and partial evaluation. In
contrast, Pfenning and Lee conclude that partial evaluation and program trans-
formations “do not seem to be expressible” even using their extension to Fω,
perhaps because their avoidance of general recursive types compels them to in-
clude the polymorphic lift that we avoid in §4.1.

Our encoding of the type function repr_pe in §4.3 emulates type-indexed
types and is related to intensional type analysis [13, 14]. However, our object
language and running examples in HOAS include fix, which intensional type
analysis cannot handle [37]. Our final approach seems related to Washburn and
Weirich’s approach to HOAS using catamorphisms and anamorphisms [36].

We could not find work that establishes that the typed λ-calculus has a final
coalgebra structure. (See Honsell and Lenisa [15] for the untyped case.)

We observe that higher-rank and higher-kind polymorphism lets us type-
check and compile object terms separately from interpreters. This is consistent
with the role of polymorphism in the separate compilation of modules [30].

6 Conclusions

We solve the problem of embedding a typed object language in a typed meta-
language without using GADTs, dependent types, or a universal type. Our fam-
ily of interpreters include an evaluator, a compiler, a partial evaluator, and CPS
transformers. It is patent that they never get stuck, because we represent object

types as metalanguage types. This work makes it safer and more efficient to
embed DSLs in practical metalanguages such as Haskell and ML.

Our main idea is to represent object programs not in an initial algebra but
using the existing coalgebraic structure of the λ-calculus. More generally, to
squeeze more invariants out of a type system as simple as Hindley-Milner, we
shift the burden of representation and computation from consumers to produc-
ers: encoding object terms as calls to metalanguage functions (§1.2); build dy-
namic terms alongside static ones (§4.1); simulating type functions for partial
evaluation (§4.3) and CPS transformation. This shift also underlies fusion, func-
tionalization, and amortized complexity analysis.

Our representation of object terms in elimination form encodes primitive
recursive folds over the terms. We still have to understand if and how non-
primitively recursive operations can be supported.

References

[1] Asai, Kenichi. 2001. Binding-time analysis for both static and dynamic
expressions. New Generation Computing 20(1):27–52.

[2] Baars, Arthur I., and S. Doaitse Swierstra. 2002. Typing dynamic typing.
In ICFP, 157–166.

[3] Balat, Vincent, Roberto Di Cosmo, and Marcelo P. Fiore. 2004. Exten-
sional normalisation and type-directed partial evaluation for typed lambda
calculus with sums. In POPL, 64–76.

[4] Benton, P. Nick. 2005. Embedded interpreters. JFP 15(4):503–542.
[5] Bjesse, Per, Koen Claessen, Mary Sheeran, and Satnam Singh. 1998. Lava:

Hardware design in Haskell. In ICFP, 174–184.
[6] Calcagno, Cristiano, Eugenio Moggi, and Walid Taha. 2004. ML-like infer-

ence for classifiers. In ESOP, 79–93.
[7] Danvy, Olivier. 1996. Type-directed partial evaluation. In POPL, 242–257.
[8] Danvy, Olivier, and Pablo E. Mart́ınez López. 2003. Tagging, encoding, and

Jones optimality. In ESOP, 335–347.
[9] Davies, Rowan, and Frank Pfenning. 2001. A modal analysis of staged

computation. J. ACM 48(3):555–604.
[10] Fiore, Marcelo P. 2002. Semantic analysis of normalisation by evaluation

for typed lambda calculus. In PPDP, 26–37.
[11] Fogarty, Seth, Emir Pasalic, Jeremy Siek, and Walid Taha. 2007. Concoq-

tion: Indexed types now! In PEPM.
[12] Glück, Robert. 2002. Jones optimality, binding-time improvements, and the

strength of program specializers. In ASIA-PEPM, 9–19.
[13] Harper, Robert, and J. Gregory Morrisett. 1995. Compiling polymorphism

using intensional type analysis. In POPL, 130–141.
[14] Hinze, Ralf, Johan Jeuring, and Andres Löh. 2004. Type-indexed data

types. Sci. Comput. Program. 51(1-2):117–151.
[15] Honsell, Furio, and Marina Lenisa. 1999. Coinductive characterizations of

applicative structures. Math. Structures in Comp. Sci. 9(4):403–435.
[16] Hudak, Paul. 1996. Building domain-specific embedded languages. ACM

Comp. Surv. 28(4es):196.

[17] Jones, Neil D., Carsten K. Gomard, and Peter Sestoft. 1993. Partial eval-
uation and automatic program generation. Prentice-Hall.

[18] Läufer, Konstantin, and Martin Odersky. 1993. Self-interpretation and re-
flection in a statically typed language. In OOPSLA/ECOOP workshop on
object-oriented reflection and metalevel architectures.

[19] MetaOCaml. http://www.metaocaml.org.
[20] Miller, Dale, and Gopalan Nadathur. 1987. A logic programming approach

to manipulating formulas and programs. In IEEE symp. on logic program-
ming, 379–388.

[21] Nanevski, Aleksandar, and Frank Pfenning. 2005. Staged computation with
names and necessity. JFP 15(6):893–939.

[22] Oliveira, Bruno César dos Santos, and Jeremy Gibbons. 2005. TypeCase:
A design pattern for type-indexed functions. In Haskell workshop, 98–109.

[23] Pašalić, Emir, Walid Taha, and Tim Sheard. 2002. Tagless staged inter-
preters for typed languages. In ICFP, 157–166.

[24] Peyton Jones, Simon L., Dimitrios Vytiniotis, Stephanie Weirich, and Geof-
frey Washburn. 2006. Simple unification-based type inference for GADTs.
In ICFP, 50–61.

[25] Pfenning, Frank, and Conal Elliott. 1988. Higher-order abstract syntax. In
PLDI, 199–208.

[26] Pfenning, Frank, and Peter Lee. 1991. Metacircularity in the polymorphic
λ-calculus. Theor. Comp. Sci. 89(1):137–159.

[27] Ramsey, Norman. 2005. ML module mania: A type-safe, separately com-
piled, extensible interpreter. In ML workshop.

[28] Reynolds, John C. 1972. Definitional interpreters for higher-order program-
ming languages. In Proc. ACM Natl. Conf., vol. 2, 717–740. Repr. with a
foreword in HOSC 11(4):363–397.

[29] Rhiger, Morten. 2001. Higher-Order program generation. Ph.D. thesis,
BRICS, Denmark.

[30] Shao, Zhong. 1998. Typed cross-module compilation. In ICFP, 141–152.
[31] Sperber, Michael, and Peter Thiemann. 1997. Two for the price of one:

Composing partial evaluation and compilation. In PLDI, 215–225.
[32] Sumii, Eijiro, and Naoki Kobayashi. 2001. A hybrid approach to online and

offline partial evaluation. HOSC 14(2–3):101–142.
[33] Taha, Walid, Henning Makholm, and John Hughes. 2001. Tag elimination

and Jones-optimality. In PADO, 257–275. LNCS 2053.
[34] Taha, Walid, and Michael Florentin Nielsen. 2003. Environment classifiers.

In POPL, 26–37.
[35] Thiemann, Peter. 1996. Cogen in six lines. In ICFP, 180–189.
[36] Washburn, Geoffrey, and Stephanie Weirich. 2003. Boxes go bananas: En-

coding higher-order abstract syntax with parametric polymorphism. In
ICFP, 249–262.

[37] Xi, Hongwei, Chiyan Chen, and Gang Chen. 2003. Guarded recursive
datatype constructors. In POPL, 224–235.

[38] Yang, Zhe. 1998. Encoding types in ML-like languages. In ICFP, 289–300.

