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Abstract We present a continuation-passing-style (CPS) transformation for some dynamic
delimited-control operators, including Felleisen’s cont rol and prompt, that extends a stan-
dard call-by-value CPS transformation. Based on this new transformation, we show how
Danvy and Filinski’s static delimited-control operators shift and reset simulate dynamic
operators, allaying in passing some skepticism in the literature about the existence of such
a simulation. The new CPS transformation and simulation use recursive delimited con-
tinuations to avoid undelimited control and the overhead it incurs in implementation and
reasoning.

Keywords delimited control operators; macro expressibility; continuation-passing style
(CPS); shift and reset; control and prompt

1 Introduction

Delimited continuations are widely useful: to name a few applications, in backtracking
search [11, 23, 59, 76], direct-style representations of monads [37-39], the continuation-
passing-style (CPS) transformation itself [22-24], partial evaluation [6, 7, 9, 19, 29, 40, 46,
63, 82], Web interactions [45, 70], mobile code [66, 74, 80], and linguistics [8, 75]. However,
the proliferation of delimited-control operators [22-24, 31, 32, 35, 36, 47-49, 71, 76, 77]
remains a source of confusion for users and work for implementers. We want to translate
control operators to each other so that they may share implementations, programming ex-
amples, reasoning principles, and program transformations. In particular, we want to take
advantage of CPS as we use, build, and reason about all delimited-control operators, not just
shift and reset [22-24].
Informally speaking, this paper presents

1. a CPS transformation for delimited-control operators, including control and prompt,
that extends a standard transformation; and

2. a simulation of these operators in terms of shift and reset that does not resort to
undelimited control.
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The remainder of this section introduces these delimited-control operators: we first spec-
ify shift and reset in terms of CPS, then turn to an operational account using syntactic
delimited contexts that accommodates the other operators more easily. Historically, the first
delimited-control operators were control and prompt rather than shift and reset, and
they were specified in terms of syntactic contexts rather than semantic continuations. But
pedagogically, we begin with shift and reset and CPS to emphasize their connection,
which is crucial to our results.

After this introduction, we make our claims precise in Section 2 and substantiate them
with implementations in Section 3. The main innovation in the implementations is to use
recursive delimited continuations. Section 4 proves our account of control and prompt
correct with respect to previous accounts. Finally, Section 5 discusses related work and
concludes.

1.1 Undelimited continuations

A continuation is a function that maps the intermediate result of a computation to its final
result [79]. For example, the Scheme program

(not (> (/ 5 3) 4))

performs a computation that we can divide into three parts: first, compute 5/3; second, check
if it is greater than 4; finally, negate the result. The continuation of computing 5/3, then, is
to check if it is not greater than 4. In other words, the continuation of dividing 5 by 3 in the
complete program above is the mathematical function

(lambda (v) (not (> v 4)))

in Scheme notation. In operational semantics, it is popular to represent a continuation by a
syntactic context, or a complete program with a hole [31]. For example, this continuation is
represented by the context (not (> [] 4)), where [ ] is a hole to be filled.

We can program using continuations explicitly or implicitly. Explicitly, we can represent
continuations by A-abstractions and manage them as values at all times by coding in confin-
uation-passing style (CPS). In CPS code, every non-primitive call occurs in a tail position
(which is roughly a non-argument position) [78, page 58]. (A primitive call must terminate
without side effects.) For example, the program

(define (/c x y ¢c) (c (/ x y)))
(/c 5 3 (lambda (v) (not (> v 4))))

performs the same computation as described above, but by explicitly invoking the A-ab-
straction (lambda (v) (not (> v 4))), which represents a continuation. To take another
example, the “safe division” function /0c defined by

(define (/0c x y c0 c¢) (if (zero? y) (c0 x) (c (/ x y))))

chooses between two explicit continuation representations, c0 and c: if the divisor y is zero,
it invokes c0 with the dividend x; otherwise, it invokes ¢ with the ratio (/ x y). To stop
the program when dividing by zero, we can provide the identity function (lambda (v) v)
to /0c as the continuation c0. For example, the program

(/0c 5 3 (lambda (v) v) (lambda (v) (not (> v 4))))

yields #t, whereas the program



X= (lambda (c) (c x))
(lambda (x) E) = (lambda (c) (c (lambda (x) E)))

(E] Ep) = (lambda (c) (E; (lambda (f) (Ep (lambda (x) ((f x) ¢))))))

Fig. 1 A call-by-value CPS transformation for the pure A-calculus

call/cc= (lambda (c) (c (lambda (f)

(lambda (cl)
((f (lambda (v) (lambda (c2) (cl v))))
cl)))))

Fig. 2 Extending the CPS transformation in Figure 1 with call/cc

(/0c 5 0 (lambda (v) v) (lambda (v) (not (> v 4))))

yields 5. The calls to /c, /0c, c, and c0 above occur in tail position, unlike the calls to /
above.

Implicitly, we can manipulate continuations to regulate the control flow of a program.
Scheme provides the control operator call-with-current-continuation (hereafter ab-
breviated call/cc) to access implicit continuations as first-class values [53]. For example,
the “safe division” function /0 defined by

(define (/0 x y c0) (if (zero? y) (c0 x) (/ x y)))

chooses between two continuations, c0 and the current (implicit) continuation: if the divi-
sor y is zero, it jumps to c0 with the dividend x; otherwise, it returns normally with the ratio
(/ x y).For example, the program

(call/cc (lambda (c0) (not (> (/0 5 3 c0) 4))))
yields #t, whereas the program
(call/cc (lambda (c0) (not (> (/0 5 0 c0) 4))))

yields 5.

Implicit continuations can be made explicit by a CPS transformation on programs [68].
Figure 1 shows the core of a standard call-by-value CPS transformation. It can be extended
to deal with functions that take multiple arguments (such as /) and primitive operations
(such as not). More importantly, as Figure 2 shows, it can be extended to translate programs
that use call/cc to programs that do not. In the opposite direction, explicit continuations
can be made implicit by a corresponding direct-style or un-CPS transformation [18, 25, 73].

1.2 Delimited continuations

A delimited (or composable, functional, or partial) continuation is a function that maps
the intermediate result of a computation to a later, but not necessarily final, result. Take for
example the program at the beginning of Section 1.1: until the point in its execution between
comparing against 4 and negating the result, the delimited continuation of dividing 5 by 3 is
to compare against 4. In other words, the continuation of the division, delimited before the
negation, is the mathematical function

(lambda (v) (> v 4))



in Scheme notation. In operational semantics, it is popular to represent a delimited con-
tinuation by a syntactic delimited context, or an expression—not necessarily a complete
program—with a hole. For example, we may represent the delimited continuation above by
the context (> [] 4). Whether a continuation function or a context data-structure is delim-
ited is not a matter of its constitution but a matter of the role it plays in a program.

As with undelimited continuations, we can program using delimited continuations ex-
plicitly or implicitly. Explicitly, we can represent delimited continuations by A-abstractions
and manage them as values at all times by coding in continuation-composing style [22, 23],
which (unlike CPS) does not require every call to occur in a tail position. For example, the
programs

(/c 5 3 (lambda (v) (not (> v 4))))
(not (/c 5 3 (lambda (v) (> v 4))))

both yield #t, but the second program is not in CPS: it calls /¢ in a non-tail position, passing
it a delimited continuation that does not contain the last part of the computation (negation).
Nevertheless, delimited continuations are useful in practical programming. For example, the
program

(define (eitherc x y c) (or (c x) (c y)))
(not (eitherc 5 3 (lambda (v) (> v 4))))

checks whether it is not the case that either 5 or 3 is greater than 4. The function eitherc
invokes the delimited continuation (lambda (v) (> v 4)) twice, in non-tail positions.
The answer is #£. This example is a simple instance of the backtracking pattern in functional
programming.

Implicitly, we can manipulate delimited continuations to regulate the delimited control
flow of a program. Danvy and Filinski proposed the delimited-control operators shift and
reset to access implicit delimited continuations as first-class values [22—-24]. These opera-
tors extend a programming language such as the call-by-value A-calculus with the following
syntax.

Expressions E = ... ‘ (shift £ E) | (reset E) (1)

Continuations are delimited by reset and captured by shift: as we make precise below,
shift captures the current continuation delimited by the nearest dynamically-enclosing
reset, binds f to the captured delimited continuation as a functional value, and replaces
the current delimited continuation abortively by the identity function. For example, the pro-
gram

(define (either x y) (shift c (or (c x) (c y))))
(not (reset (> (either 5 3) 4)))

also checks whether it is not the case that either 5 or 3 is greater than 4. Here either is
the direct-style analogue to eitherc above. The shift on the first line captures the current
continuation delimited by the reset on the second line, so ¢ is bound to the mathematical
function (lambda (v) (> v 4)).

Like undelimited continuations, implicit delimited continuations can be made explicit
by a transformation on programs: as for call/cc, we can extend the CPS transformation
in Figure 1 to translate programs that use shift and reset to programs that do not. Fig-
ure 3 shows the additional equations. They contain non-tail calls and so are sensitive to
the evaluation order of the target language, which we take to be call-by-value. Therefore,



(reset E) = (lambda (c) (c (E (lambda (v) v))))

(shift f E) = (lambda (c) (let ((f (lambda (x) (lambda (c2) (c2 (c x))))))
(E (lambda (v) v))))

Fig. 3 Extending the CPS transformation in Figure 1 with shift and reset

strictly speaking, Figure 3 does not constitute a CPS transformation, only a continuation-
composing-style transformation that extends a standard CPS transformation. If desired, we
can eliminate these non-tail calls and regain CPS by applying the CPS transformation in
Figure 1 to Figures 1 and 3 [23]. The continuations made explicit at this step are called
metacontinuations. We effectively perform this further CPS transformation in Sections 3.3
and 3.4, where the equations’ right-hand-sides are in CPS again, with tail calls only.

1.3 The original, operational account of delimited control

Before Danvy and Filinski introduced shift and reset to access delimited continuations,
Felleisen introduced delimited-control operators to go beyond continuations [35]—to de-
limit and capture syntactic contexts [31, 32]. We can define shift and reset syntactically
as well [9, 22, 24, 27, 67], with reduction rules in the style of Felleisen [31]:

M[(reset V)] > M[V] 2
M[(reset C[(shift f E)])] > M[(reset E')]
where E' = E{f + (lambda (x) (reset C[x]))} and x is fresh. (3)

Underlining indicates redexes. Boldface distinguishes one reset on the right-hand side to
be discussed in Sections 1.5 and 1.6 below. Here V stands for a value, C stands for an
evaluation context that does not cross a reset boundary, and M stands for an evaluation
context that may cross a reset boundary:

Values V = (lambda (x) E) | --- )
Contexts C[]:::[HC[([] E)HC[(V H)H 5)
Metacontexts M[] == C[] ]M[(reset C[]] 6)

To help the exposition below, these reduction rules do not handle the case when a shift term
is evaluated with no dynamically enclosing reset. Danvy and Filinski’s original proposal
amounts here to enclosing the entire program in a top-level reset, which is to provide the
program with the identity function as the initial continuation.

It has been noted [9, 20, 26] that these syntactic definitions of contexts and metacon-
texts are not rabbits pulled out of hats. Rather, Table 1 shows how contexts are the result
of defunctionalizing [72] the A -abstractions in the right-hand side of Figure 1 that represent
continuations. Similarly, metacontexts are the result of defunctionalizing the A-abstractions
introduced to represent metacontinuations in the CPS transformation of the right-hand side
of Figure 3. Biernacka et al. [9] use this correspondence to provide an abstract machine for
shift and reset and show that it is equivalent to the operational (reduction) and denota-
tional (transformation) semantics above.



Contexts of the form: represent continuation-representing A-abstractions of the form:

[] (lambda (v) v)
cl(] E)] (lambda (f) (E (lambda (x) ((f x) C))))
Cl(v []] (lambda (x) ((V x) C))

Table 1 Contexts are defunctionalized representations of continuations

1.4 A tale of two resets

The reduction rule (3) for shift mentions reset twice on its right-hand side. On the first
line, the reset that delimits the captured context is preserved after the capture, so the context
from a single reset outward is protected from manipulation by any number of dynamically
enclosed shift invocations. Informally speaking, reset makes any piece of code appear
pure to the outside, that is, devoid of control effects. On the second line, the captured context
is surrounded by reset, so £ is bound to a pure function.

Neither occurrence of reset on the right-hand side of (3) is accidental; they are nec-
essary for the operational semantics to match the transformation in Figure 3. Many other
delimited-control operators have been proposed that remove one or both delimiters on the
right-hand side of (3). Three such variations on shift and reset are possible, namely
control and prompt:

M| (prompt V)] > M[V] @)
M([(prompt C[(control f E)])] > M[(prompt E')]
where E' = E{f — (lambda (x) C[x])} and xis fresh; (8)
shift0 and reset0:
M([(reset0 V)] > M[V] 9

M[(zeset0 Clishift0 £ E)))] > MIE]

where E' = E{f — (lambda (x) (reset0 C[x]))} and x is fresh; (10)
and control0 and prompt0:

M| (prompt0 V)] > M[V] (11)

M (prompt0 C[(control0 f E)])] > MI[E"]
where E' = E{f — (lambda (x) Clx])} and x is fresh. (12)

For each variation, we change the definition of metacontexts in (6) to replace reset by
prompt, reset0, or prompt 0. Each pair of these control operators can also be defined by an
abstract machine.

1.5 Introducing control and prompt

Felleisen’s control operator [31, 32, 35, 36, 77] captures a delimited context without sur-
rounding it with a delimiter. Thus, when a context captured by control is invoked, it may
further capture the context of invocation—unlike a context captured by shift. The differ-
ence between shift and control can be observed operationally as follows. The program



(reset (reset (cons ’"a (reset
(let ((y (shift f (shift g (cons 'b (f "()))))))
(shift h y))))))

evaluates to (a b) by the following reduction steps:

> (reset (reset (cons '"a (reset
(shift g (cons 'b
((lambda (x) (reset (let ((y x)) (shift h y)))) "()))))))
> (reset (reset (cons 'a (reset
(cons 'b
((lambda (x) (reset (let ((v x)) (shift h y)))) "()))))))
> (reset (reset (cons 'a (reset
(cons 'b (reset (let ((y " ())) (shift h y))))))))
> (reset (reset (cons ’'a (reset
(cons 'b (reset (shift h " ())))))))
> (reset (reset (cons 'a (reset (cons 'b (reset "()))))))

Here shift f introduces a reset (in boldface) under the lambda, which stops shift h
from capturing cons ’b. Thus the function

(lambda (x) (reset (let ((y x)) (shift h y))))
is equivalent to the identity function. In other words, the delimited context
(let ((y [])) (shift h y))

captured by shift f isequivalent to the empty delimited context [ ]. Furthermore, shift £
maintains the reset delimiting the captured context, so shift g merely captures the empty
context. Thus the initial redex

(shift £ (shift g (cons b (f " ()))))

is equivalent to just (shift £ (cons ‘b (£ ' ()))).
In contrast, the program

(prompt (prompt (cons ’'a (prompt
(let ((y (control f (control g (cons 'b (f "()))))))
(control h y))))))

evaluates to (a) by the following reduction steps:

> (prompt (prompt (cons 'a (prompt
(control g (cons 'b
((lambda (%) (let ((y x)) (control hy))) "())))))))
> (prompt (prompt (cons 'a (prompt
(cons 'b
((lambda (x) (let ((y x)) (control h y))) "()))))))
> (prompt (prompt (cons ’"a (prompt
(cons 'b (let ((y "())) (control h y)))))))
> (prompt (prompt (cons 'a (prompt
(
a

(cons b (control h "()))))))
> (prompt (prompt (cons 'a (prompt ’()))))

Here control f allows control h to capture and drop cons ’b. Thus the function



(lambda (x) (let ((y x)) (control h y)))
is not equivalent to the identity function. In other words, the delimited context
(let ((y [])) (control h y))

captured by control f is not equivalent to the empty delimited context [ |. Like shift f
above, though, control f keeps the prompt delimiting the captured context, so control g
merely captures the empty context. Thus the initial redex

(control £ (control g (cons 'b (£ '()))))

is equivalent to just (control f (cons 'b (£ ' ()))).

The literature contains three abstract machines for control and prompt: Felleisen’s
original machine [10, 32], Biernacka et al.’s definitional machine [9, 12—15], and Biernacki
et al.’s new machine in defunctionalized form [13].

Sitaram’s fcontrol [76] is closely related to control in nature. Felleisen and Sitaram
refer to the delimiter as prompt, run, #, or %.

1.6 Introducing shift0 and reset0

The shift0 operator captures a delimited context as shift does, but removes the reset0
that delimits the captured context. For example, the program

(reset0 (reset0 (cons "a (reset0
(let ((y (shift0 f (shift0 g (cons 'b (f "()))))))
(shift0 h y))))))

evaluates to (b) by the following reduction steps:

> (reset0 (reset(0 (cons 'a
(shift0 g (cons 'b
((lambda (x) (reset0 (let ((y x)) (shiftO h y)))) "0))))))
> (reset0

(cons 'b
((lambda (x) (reset0 (let ((y x)) (shift0 h y)))) "0)))
> (reset0 (cons 'b (reset0 (let ((y ' ())) (shift0 h y)))))

> (reset0 (cons 'b (reset0 (shiftO h ' ()))))
> (reset0 (cons 'b "()))

Like shift f above, shift0 f here introduces a reset0 (in boldface) under the lambda,
which stops shift0 h from capturing cons ’b. Thus the function

(lambda (x) (reset0 (let ((y x)) (shift0 h y))))
is equivalent to the identity function. In other words, the delimited context
(let ((y [])) (shift0 h y))

captured by shift0 f is equivalent to the empty delimited context [ ]. Unlike shift £
above, however, shift0 f removes the captured context along with its delimiting reset0,
exposing the next-outer delimited context cons ’a to be captured by shift0 g. Thus the
initial redex

(shift0 £ (shift0 g (cons b (£ "()))))



is not equivalent to just (shift0 f (cons ‘b (£ " ()))).

With shift0 in the language, reset0 is not idempotent: (reset0 E) is not equivalent
to (reset0 (reset0 E)), because each reset0 only “defends against” one shift0. For
example, the program

(reset0 (cons ’a
(reset0 (shift0 f (shift0 g ' ())))))

evaluates to (), but the program

(reset0 (cons 'a
(reset0 (resetO (shift0 £ (shift0 g "()))))))

evaluates to (a).

Danvy and Filinski [22] consider the shift0 operator briefly in their work on shift.
Also, Hieb and Dybvig’s spawn [49] can be thought of as a reset0 that, each time it is
invoked to insert a new delimiter, creates a specific shift0 operator for that new delimiter.

1.7 Introducing control0 and prompt0

The control0 operator is like control but removes the prompt 0 that delimits the captured
context. For example, the program

(prompt0 (promptO (cons ’"a (prompt0
(let ((y (control0 f (control0 g (cons 'b (£ "()))))))
(control0 h y))))))

evaluates to () by the following reduction steps:

> (prompt0 (prompt0 (cons ’'a
(control0 g (cons 'b
((lambda (x) (let ((y x)) (controlO h y))) "()))))))
> (prompt0
(cons 'b
((lambda (x) (let ((y x)) (controlQ h y))) "())))
> (prompt0 (cons 'b (let ((y "())) (control0 h y))))
> (prompt0 (cons ’'b (control0 h ' ())))
> ()

Here control0 f allows controlO g to capture cons ’a, and controlQ h to capture
cons ’b. Thus the initial redex

(control0 f (control0 g (cons b (£ "()))))

is not equivalent to just (control0 f (cons 'b (f ' ()))). Neither is the delimited con-
text

(let ((y [])) (control0 h y))

captured by control0 f equivalent to the empty delimited context [ ].

The control0 and prompt0 operators are essentially Gunter et al.’s cupto and set
[47, 48] stripped down to one delimiter label, and closely related to Queinnec and Serpette’s
splitter [71]. Dybvig et al. [30] introduce a set of control operators that are like cupto
and set, except unlike Gunter et al. (and us) they represent a continuation in an abstract data
type (not necessarily as a function) and invoke it with a general expression (not necessarily
a value). Dybvig et al. provide an abstract machine for their operators.



10

1.8 Static versus dynamic operators

Danvy and Filinski [22-24] informally classify their shift and reset operators as lexical
and static, and other delimited-control operators such as control and prompt as dynamic.
They use these words to draw an analogy to lexical versus dynamic scope for variables: Lex-
ical scope segregates the environment of an abstraction from the environment of its applica-
tion, whereas dynamic scope allows the body of an abstraction to access the environment of
application. Similarly, as Biernacki et al. [15, Section 2.2] explain, the context captured by
shift is segregated from the context of its application, whereas dynamic control operators
allow a captured context to access its context of application.

2 Expressing control operators by extending the CPS transformation

Described operationally as in (7)—(12), the variations among static and dynamic delimited-
control operators seem like minor changes with little sense of purpose. Because it is easy
to add a delimiter, it is easy to express shift and reset in terms of dynamic operators
such as control and prompt [12], as well as to express all these operators in terms of
control0 and prompt0. In the opposite direction, it “seems not to be known” [47, 48] how
to remove a delimiter, for example whether shift and reset can express control and
prompt. Without appeal to CPS, each version of these operators serves equally well the
basic purpose of letting the programmer regulate the control flow of a delimited part of a
program, so Gunter et al. choose to take control0 and prompt0 as primitive.

To be precise, we turn to Felleisen’s notion of macro-expressibility [33]: a language .&”
can macro-express its conservative extension .Z if and only if each facility I present in .%
but not £’ can be translated by a syntactic abstraction A into £, such that a program in .&
halts exactly when its translation in .#” halts. A syntactic abstraction is a syntactic context,
or (in Scheme) a macro that does not analyze its arguments. We weaken the notion of macro-
expressibility to top-macro-expressibility: .’ can top-macro-express . if and only if each
facility IF in .Z but not .’ can be translated by a syntactic abstraction A into .¢”, and there
exists a unary syntactic abstraction Ag, such that a program in . halts exactly when Ag
applied to its translation in .#” halts. That is, top-macro-expressibility allows the translation
to specify a syntactic abstraction Ag for the “top level” of programs of .Z. For short, when
the A-calculus with one set of control operators top-macro-expresses the A-calculus with
another set of control operators, we say that the former set simulates the latter set. This
relation is obviously a preorder: below we use the fact that we can compose simulations.

We show below that shift and reset simulate control and prompt, shift0 and
reset0, and control0 and prompt0. On the way, we provide the latter calculi with CPS
transformations that extend a standard one.

2.1 Expressing control operators

Merely that one set of control operators simulates another is not surprising. In particular,
using mutable state (set!) and undelimited control (call/cc):

1. Sitaram and Felleisen [77] simulate control and prompt;
2. Filinski [37] simulates shift and reset;! and

! This simulation uses a single mutable storage cell containing an undelimited continuation. As such, it
underlies the connection that Ariola et al. [5] made between delimited control and subtractive logic.
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3. Gunter et al. [47, 48] simulate cupto and set, which subsume control0 and prompt0.

Moreover, we can simulate set! and call/cc using shift and reset, in two steps: First,
we can simulate an unbounded number of storage cells using a single storage cell by im-
plementing our own memory allocation inside a vector or list. Second, because a single
storage cell and undelimited control together form a monadic effect (namely the continu-
ation monad transformer applied to the state monad), we can in turn simulate them using
shift and reset [37-39]. Thus we already know that shift and reset simulate the other
delimited-control operators. The CPS transformations for shift and reset [22-24] then
pull back to the other operators.

What may be surprising is that we need not resort to undelimited control in order to sim-
ulate the dynamic operators. We use the word “resort” because translation through call/cc
is undesirable: call/cc captures the context even beyond the delimiter.

1. In practical terms, this context junk is duplicated and discarded along with the delimited
continuation itself, which is inefficient. For example, Queinnec [70] built a Web appli-
cation using call/cc in which each serialized continuation contains 100K of overhead.
Recently, Gasbichler and Sperber [44] showed that it is much more efficient to imple-
ment shift and reset without capturing undelimited continuations. (Gasbichler and
Sperber actually implement shift and reset by way of control and prompt, but not
shift0 and reset0 or control0 and prompt0.)

2. In theoretical terms, this context junk not only hampers the efficiency of an implementa-
tion but also complicates reasoning about programs and their observational equivalence
[41].

The program below demonstrates the space overhead that can be incurred when trans-
lating delimited-control operators through undelimited ones.

(let loop ((junk-identity
(let ((junk (list ’junk)))
(cons junk (reset (shift f £))))))
(set-cdr! (car junk-identity)
(list (cdr junk-identity)))
(loop (cons (cdr (car junk-identity))
(cdr junk-identity))))

The expression (shift f f) above captures the empty context, that is, the identity function
as a delimited continuation. However, its undelimited continuation contains junk, to which
the rest of 1oop appends. It does not matter if we replace (reset (shift f f)) above by
(prompt (control f f)), (reset0 (shift0 f f)),or (prompt0 (control0 f f)):
whereas a native implementation of delimited control enters an infinite loop with bounded
memory usage, an implementation of delimited control in terms of undelimited control, such
as the three previous ones named above, fails to garbage-collect junk and thus expends
an arbitrary amount of memory. In contrast, our simulation of control and prompt uses
bounded space, according to a simple definition of space consumption [16] for Biernacka
et al.’s abstract machine for shift and reset [9].

2.2 Extending the CPS transformation

Concomitant with the difficulty of using shift and reset to simulate the other control
operators is the difficulty of devising denotational semantics for these operators that extend a
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Fig. 4 Control operators and translations among them

standard CPS transformation. To be more precise, unlike with shift and reset, itis unclear
how to translate the other operators using a transformation that coincides on pure A-terms
with Figure 1. Instead, semantics in the literature for dynamic delimited-control operators
either rely on complex mutable data structures containing undelimited continuations (in
essence implementing the operators in Scheme) or specify an algebra of contexts termed
abstract continuations [35, 36, 69] (in essence operating on sequences of activation frames).

The use of these alternative reasoning tools for dynamic delimited control led to the
natural question whether standard continuation semantics can be used at all. Ordinary con-
tinuation semantics was declared “inadequate” [35], “insufficient”, and a “failure” [36], as it
was said that control expressions “in general have no CPS counterpart” [24]. Since these
claims were made, however, monads have become more popular in the denotational seman-
tics of computational effects [65]. Monads are so general that we can hope for them to cover
even a language with control0 and prompt0. Furthermore, Filinski showed how to rep-
resent monads using continuations and in terms of shift and reset [37-39], so we can
further hope that ordinary continuations and shift and reset suffice to treat dynamic de-
limited-control operators. We show here that indeed they do. What distinguishes dynamic
control operators is that the continuation is recursive.

Figure 4 depicts the situation: the single arrows represent previous translation results,
and the two double arrows represent our contributions here.

3 Extending the CPS transformation using recursive continuations

In this central section of the paper, we translate dynamic control operators by extending
the standard CPS transformation, then simulate them using shift and reset. We visit the
operators in the order in which we introduced them in Section 1: first the static operators
shift and reset, then the dynamic operators control and prompt, shift0 and reset0,
and finally control0 and prompt0.

The key to our treatment is to represent delimited contexts as recursive functions: When
a delimited context captured by a dynamic control operator is invoked, it may take control
over the context of invocation. Hence, the captured context must take the invocation context
as an argument in our CPS transformation, then apply the invocation context (except when
discarding the invocation context abortively). Because the captured context and the invoca-
tion context may be the same, it is recursive for the former to apply the latter. We can think
of the invocation context as an accumulator argument to the captured context [84].



13

Our development below of recursive continuations is guided informally by recursive
types. For example, if & is a type, then the type List &, of singly-linked lists of values of
type a, can be defined by

Listax = 14+ a x List o, (13)

where 1 is the unit type (inhabited by the empty list ()) and X constructs product types
(inhabited by cons cells). For brevity, we take the unfolding of a recursive type to give not
just isomorphic but in fact equivalent types [17, 43]. For example, (13) states an equation
between types, not just an isomorphism; we do not explicitly convert a pair to a list.

3.1 Context types and answer types for shift and reset

We first review the types of delimited contexts captured by shift and reset, then turn to the
types of delimited contexts captured by other operators. The CPS transformation relates not
just terms but also types between the source and target languages. If the source program is a
well-typed term in, say, the simply-typed A-calculus, then the output of the transformation
is also well-typed in the simply-typed A-calculus: every source type at the top level or to
the right of a function arrow is mapped to a type of the form (T — @) — @y, where o,
and @, are answer types [22, 64, 67, 83]. The delimited continuation is a function from the
type 7, of the hole in the delimited context, to the type @, of the context once plugged. For
example, the expression

(shift £ (1f (£ "a) 1 2))

translates to a term of the type (Sym — Bool) — Int. In words, the expression produces
an integer as the final answer when plugged into a delimited context of type Sym — Bool.
One such delimited contextis (eq? [] "b) captured by shift: it produces a boolean when
plugged with a symbol. In other words, the function (lambda (x) (reset (eq? x 'Db)))
maps symbols to booleans.

For comparison with other control operators below, we define the types

Context T®W = T— @, (14)
Answer ® = @, (15)

such that
Context T @ = T — Answer @. (16)

3.2 Translating control and prompt

We now treat the dynamic operators control and prompt.
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3.2.1 Concatenating contexts by combining recursive continuations

In general, when a context captured by control is invoked, it may further capture the sur-
rounding context (up to the nearest dynamically enclosing reset) at the point of invocation.
Thus a context captured by control, unlike one captured by shift, does not denote a map
from an intermediate result (that fills a hole) to a final answer, but rather denotes a map from
an intermediate result and any surrounding context at the point of invocation to a final an-
swer. In other words, because a control-captured context may take control over a context
where it is subsequently invoked, we need to pass it the invocation context as a semantic
argument. There are two cases: either the invocation context is the empty context [ ] (if the
captured context is invoked right under a delimiter) or it is not empty. Accordingly, we let a
context captured by control whose hole is of type T and answer is of type ® take the type
Context’ T @ defined by

Context’' T @ = T— (1+ Context’ ® ®) — ®. (17)

In this recursive type definition, 1+ o means either the special token #f or a value of type «.
We use #£ (of type 1) to represent the empty invocation context.

The empty context captured by shift is the identity function of type Context ® .
Analogously, the empty context captured by control has the type Context’ @ o, but it
cannot just be the identity function because there is an additional argument in (17) of type
1+ Context’ ® ®. Rather, it is the recursive function send defined below.

(define (send v)
(lambda (mc) (if mc ((mc v) #f) v)))

This function implements the empty context as follows. Plugging an intermediate result v
(of type m) into the empty context in an invocation context mc (of type 1+ Context’ @ ®)
yields the final answer of mc[v] (that is, the final answer of filling the hole in mc with v). If mc
is empty (that is, #£), then the final answer is just v. If mc is not empty, then the final answer
is that of plugging v into mc in the empty invocation context #£. This code thus relies on the
fact that contexts and their concatenation form a monoid. In particular, the empty context is
a left and right identity for concatenation.

To concatenate two contexts captured by shift is to compose two continuation func-
tions. To concatenate two contexts captured by control, one of type Context’ T @ in-
side another of type 1+ Context’ @ @, we define a recursive function compose, of type
(Context’ T @ x (1+ Context’ ® @)) — Context’ T @ (among other types):

(define (compose c mcl)
(1f mcl
(lambda (v) (lambda (mc2) ((c v) (compose mcl mc2))))
c))

This function concatenates two contexts ¢ and mcl as follows. Plugging an intermediate
result v into mc1[c[ ]] in an invocation context mc2 yields the final answer of mc2[mc1[c[v]]],
which by the associativity of concatenation is the same as plugging v into c in the invocation
context mc2[mcl[ ]]. If me1 is empty (that is, #£), then the concatenation mc1[c[ ]] is just ¢[ ].

The special token #£, of type 1+ Context’ @ @ above, distinguishes the empty invocation
context from other invocation contexts, so as to ground the recursion in send and compose.
Both #f and send represent the empty context: If our target language lets us compare values
against send intensionally, then we can eliminate #f and use send as the special token. That
is, we could implement send in Scheme as



(define (send v)
(lambda (mc) (if (eq? send mc) v ((mc v) send))))

and compose as

(define (compose c mcl)
(if (eqg? send mcl)
c
(lambda (v)
(lambda (mc2)
((c v) (compose mcl mc2))))))

but do not, for clarity. As a reviewer points out, another way to avoid the sum type and the
special token #f is the Church encoding.

3.2.2 Extending the standard CPS transformation with control and prompt

According to (17), the type Context’ T @ is a function type, and T only appears in its domain,
not codomain. Thus a context captured by control has the function type of a continuation,
just like a context captured by shi ft, except for the recursive answer type Answer’ @ defined
by

Answer’ @ = (14 Context’ ® ®) —® = (1+®— Answer’ ®) — o, (18)

such that
Context’ T® = 7— Answer’ @ = Context T (Answer’ ®). (19)

Thus we can write Context’ in terms of Context! That is, we can treat a delimited context
captured by control as an ordinary, if recursive, continuation. The equations below extend
Figure 1 to control and prompt. It maps every source type 7, at the top level or to the right
of a function arrow, to a type of the form (7 — Answer’ @) — Answer’ ®.

(prompt E) = (lambda (c) (¢ ((E send) #£))) (20)

(control f E) = (lambda (cl) 21)
(lambda (mcl)
(let ((f (lambda (x)
(lambda (c2)
(lambda (mc2)
(((compose cl mcl) x)
(compose c2 mc2)))))))
((E send) #£))))

The final result of a complete program E, surrounded by a prompt, is ( (E send) #f) (of
type ®). This explains the translation for prompt in (20): it plugs the result of E into the
current continuation c. To understand the translation for control in (21), suppose we plug
(control f E) into acontext cl inside an invocation context mc1. Then our program is of
the form

M| (prompt mclfcl[(control £ E)]])], (22)

where M| | is a metacontext. This program reduces to

M| (prompt E{f—---}]. (23)
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When we later plug (f x), where x is some value, into a context c2 inside an invocation
context mc2, our program is of the form

M| (prompt mc2[c2[(f V)], 24)

and should reduce to

M| (prompt mc2[c2[mclclx]]]D]. (25)
The body of f in (21) is ( ( (compose cl mcl) x) (compose c2 mc2)), which is the re-
sult of (prompt mc2[c2[mel[cl[x]]]]).

3.2.3 Simulating control and prompt in terms of shift and reset

Because this transformation extends a standard CPS transformation, it shows how to treat
control and prompt as operations in the continuation monad (with answer type Answer’ ®).
Then, because shift and reset express all operations in the continuation monad, we can
define control and prompt in direct style as macros in terms of shift and reset.

(define-syntax prompt
(syntax-rules ()
((prompt e)
(shift ¢ (c ((reset (send e)) #£))))))

(define-syntax control
(syntax-rules ()
((control f e)
(shift cl
(lambda (mcl)
(let ((f (lambda (x)
(shift c2
(lambda (mc2)
(((compose cl mcl) x)
(compose c2 mc2)))))))
((reset (send e)) #£)))))))

To obtain the final result of a complete program (surrounded by a prompt), we enclose the
program in prompt-top-level
(define-syntax prompt-top-level
(syntax-rules ()
((prompt-top-level e)
((reset (send e)) #£))))

The definition of prompt above happens to simplify to this macro.
These macros correspond directly to the CPS equations in the previous paragraph, ex-
cept:
1. Wherever the CPS equations abstract over a continuation argument, the macros use
shift rather than lambda.
2. Wherever the equations pass the continuation C to E, the macros say (reset (C E)),
to plug E into the delimited context (C []). The only C above is send.

This simulation of control and prompt in terms of shift and reset does notuse call/cc
directly: it does not capture any continuation beyond the outermost delimiting prompt. It
also does not keep state, though mc above (of type 1 + Context’ ® @ in (18)) is effectively
threaded along as a single storage cell.



3.3 Translating shift0 and reset0

Appendix C of Danvy and Filinski’s technical report [22] considers shift0 and reset0
briefly. It shows a denotational model that passes around a list of delimited contexts, which
can be thought of as a sequence of activation frames, except each frame corresponds to a
reset0 rather than a function call.? In our formulation, a delimited context captured by
shift0 whose hole type is T and whose answer type is ® has the type Contexty T @, where

Contextg T @ = 7 — List (Contexty ® ®) — @. (26)

A value of type List (Contexty @ ®) lists successive delimited contexts from innermost to
outermost.

The function propagate defined below plugs an intermediate answer v (of type ®) into
a list of contexts 1c (of type List (Contextyp @ ®)) by calling the head of 1c with v and the
tail of 1c. If 1c is empty, then the final answer is simply v.

(define (propagate v)
(lambda (lc) (if (null? lc) v (((car lc) v) (cdr 1lc)))))

This function is of type Contexty @ ®: it is itself a delimited context, namely the empty one.

Like the type Context’ T @ in Section 3.2, Contextyp T ® is a function type in which
7 appears only in the domain. Hence a delimited context captured by shift0 is just like
one captured by shift, except the answer type Answerg @ of the continuation is recursive,
defined by

Answery @ = List (Contexty ® @) — @ = List (e — Answery ®) — @, 27

such that
Contextyg T @ = T— Answerg @ = Context T (Answery ®). (28)

Thus we can write Contextg in terms of Context. Therefore, just as with control, we can
treat a delimited context captured by shift0 as an ordinary continuation. Following the
Appendix C mentioned above, the equations below extend Figure 1 to a CPS transformation
for shift0. It maps every source type 7, at the top level or to the right of a function arrow,
to a type of the form (7 — Answery @) — Answer ©.

(reset0 E) = (lambda (c) (29)
(lambda (lc)
((E propagate) (cons c lc))))

(shift0 f E) = (lambda (cl) 30)
(lambda (lc)
(let ((f (lambda (x)
(lambda (c2)
(lambda (lc)
((cl x) (cons c2 1c)))))))
((E (car 1lc)) (cdr 1lc)))))

2 Johnson and Duggan [52] add control facilities to the programming language GL that are similar in
power to shift0 and reset0, but they make each function call delimit the context (like in Landin’s SECD
machine [21, 62]), so their frames do correspond to function calls.
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As promised at the end of Section 1.2, these equations are in CPS: the apparently non-tail

call in expressions like ((E propagate) (cons c 1lc)) begins a curried call with two
arguments. The final result of a complete program E is ((E propagate) ' ()).

As in Section 3.2.3, we turn these equations into a simulation of shift0 and reset0 in
terms of shift and reset that neither captures undelimited continuations nor keeps mutable

state.

(define-syntax reset0
(syntax-rules ()

((reset0 e)
(shift c
(lambda (1lc)
((reset (propagate e)) (cons ¢ 1c)))))))

(define-syntax shift0
(syntax-rules ()

((shift0 f e)
(shift cl
(lambda (lc)
(let ((f (lambda (x)
(shift c2
(lambda (1lc)
((cl x) (cons c2 1c)))))))
((reset ((car lc) e)) (cdr 1c))))))))

(define-syntax resetO-top-level
(syntax-rules ()
((resetO-top-level e)
((reset (propagate e)) '()))))

The last macro reset0-top-level encloses a complete program to yield its final result.

3.4 Translating control0 and prompt0

The control0 operator removes both occurrences of prompt 0 on the right-hand side of (12);
it combines the dynamic nature of control and shift0. It is thus not surprising that we can
treat control0 with recursive continuations and the CPS transformation by combining the
ideas from Sections 3.2 and 3.3.

A delimited context captured by control0, with hole type T and answer type ®, has the

type
Contexty T @ = 7— (1 + Context, ® ®) — List (Contexty ® ®) — o, (31)

in which 7 appears only in the domain. A delimited context captured by control0 is thus
just like one captured by shift with the recursive answer type Answer(, @ defined by

Answery ® = (1+ Context @ ®)— List (Contexty ® ®) — @
= (14 (®— Answer; ®)) — List (@ — Answer, ®) — ©, (32)

such that
Context; T @ = T— Answery @ = Context T (Answer(, ®). (33)



19

Thus we can write Context;, in terms of Context. Informally speaking, the 1+ part of the
types above keeps track of the delimited context within the nearest dynamically enclosing
prompt0, and the List part keeps track of the delimited contexts beyond that prompt0.

The empty delimited context captured by control0, of type Context), ® o, is the func-
tion send-propagate below, which combines send and propagate.

(define (send-propagate v)
(lambda (mc)
(if mc
((mc v) #f)
(lambda (lc)
(if (null? 1c) v ((((car lc) v) #£f) (cdr 1c)))))))

To compose delimited contexts captured by control0, we simply use the code for compose
above, because—although it is created for control—it also has the type

(Context6 7 @ x (1 + Contexty ® ®)) — Context) T . 34)
Finally, we use send-propagate and compose to define an ordinary CPS transforma-

tion for control0. It maps every source type 7, at the top level or to the right of a function
arrow, to a type of the form (7 — Answer;, ®) — Answer(, ®.

(prompt0 E) = (lambda (c) (35)
(lambda (mc)
(lambda (lc)

(((E send-propagate) #f)
(cons (compose ¢ mc) lc)))))

(control0 f E) = (lambda (cl) (36)
(lambda (mcl)
(lambda (lc)
(let ((f (lambda (x)
(lambda (c2)
(lambda (mc2)

(((compose cl mcl) x)
. (compose c2 mc2)))))))
(((E (car lc)) #f) (cdr 1c))))))

The final result of a complete program E is ( ( (E propagate) #£f) ' ()).
Again, we turn these CPS equations into a simulation of contro10 and prompt 0 in terms
of shift and reset that neither captures undelimited continuations nor keeps mutable state.

(define-syntax prompt0
(syntax-rules ()

((prompt0 e)
(shift c
(lambda (mc)

(lambda (lc)

(((reset (send-propagate e)) #f)
(cons (compose ¢ mc) 1c))))))))
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(define-syntax control0
(syntax-rules ()
((control0 f e)
(shift cl
(lambda (mcl)
(lambda (lc)
(let ((f (lambda (x)
(shift c2
(lambda (mc2)
(((compose cl mcl) x)
(compose c2 mc2)))))))
(((reset ((car 1lc) e)) #f)
(cdr 1c)))))))))

(define-syntax promptO-top-level
(syntax-rules ()
((promptO-top-level e)
(((reset (send-propagate e)) #£f) "()))))

The last macro prompt0-top-level encloses a complete program to yield its final result.

4 Relation to other accounts of control and prompt

Section 3.2.2 above gives a CPS transformation for control and prompt. Another way to
view the same definitions in hindsight is to recognize that a denotational semantics given by
Felleisen et al. [35, Section 4] encodes control and prompt in the monad Control given by

Control T = Context’ T ® — o, 37
(unit x) = (send x), (38)
(bind m ¢) = (lambda (mc) (m (compose ¢ mc))). 39)

(In Felleisen et al.’s notation, send is I and compose is Agf. B,ufg.) Because the answer
types Answer’ @ and @ are different, this monad is not the continuation monad, so these
denotational equations do not give a standard CPS transformation. (In contrast, Wadler [83]
shows how Murthy’s types for shift and reset [67] unify the two answer types and thus are
compatible with the continuation monad.) Yet we can use Filinski’s representation of mon-
ads in terms of shift and reset [37-39] to represent control and prompt—essentially as
in (20) and (21). In fact, it recently came to light that Filinski, in personal communication to
Danvy in 1994, had already represented the Control monad and thus implemented control
and prompt in terms of shift and reset, though instead of the send and compose we de-
fine in Section 3.2.1, Filinski used Felleisen et al.’s initial-algebra representation of contexts
[36]. As a reviewer points out, the monadic view is one way to prove that our definitions
implement control and prompt.

A more direct proof that our translation is faithful lies in Ager et al.’s functional corre-
spondence between evaluators and abstract machines [2—4] using defunctionalization [26,
72] and the CPS transformation. In one direction, this correspondence turns an evaluator
into an abstract machine by transforming the evaluator into CPS and defunctionalizing con-
tinuations (represented by A-abstractions) into contexts. For example, Ager et al. [2] turned
a call-by-value evaluator into the CEK machine [34] and a call-by-name evaluator into the
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Krivine machine [61]. In the other direction, the correspondence turns an abstract machine
into an evaluator by refunctionalizing contexts into continuations and transforming the result
into direct style. For example, Danvy [21] revealed the evaluator underlying Landin’s SECD
machine [62]; more recently, Biernacki et al. [13] derived another CPS transformation for
control and prompt from their new abstract machine.

In our case, we follow the latter direction to turn our equations into an abstract machine,
as detailed in the appendix: First, we convert the right-hand-sides of our equations in Fig-
ure 1 and (20) and (21) into an evaluator that passes environments and closures explicitly.
Second, we CPS-transform the evaluator to eliminate the non-tail calls in (20) and (21).
Finally, we defunctionalize continuations and metacontinuations (both represented by A-
abstractions) to get an abstract machine corresponding to the evaluator [9, 20, 26]. Indeed,
Biernacki et al. have already constructed this machine [13, Section 12]. The machine extends
the data type of contexts in (5) with a new constructor corresponding to the compose func-
tion in Section 3.2.1. A straightforward simulation argument between this machine and Bier-
nacka et al.’s definitional machine shows that our machine correctly implements control
and prompt, so our CPS transformation does as well.

Sitaram and Felleisen [77] simulate control and prompt in Scheme using call/cc
and multiple mutable storage cells. Our simulation of control and prompt using shift
and reset composes with Filinski’s simulation of shift and reset using call/cc and a
single mutable storage cell [37] to yield a more modular simulation of control and prompt
using call/cc and state. Sitaram and Felleisen’s simulation maintains a global, mutable
run-stack, comprised of sub-stacks, one for each dynamically active prompt. Each sub-stack
is a list of invocation points (that is, undelimited continuations captured by call/cc). These
data structures correlate with our simulation: The run-stack is a sequence of “mc” functions
(of type 1+ Context’ @ m), one for each dynamically active prompt. Each mc function is a
sub-stack, the result of concatenating control-captured contexts using compose.

5 Conclusion and related work

We have presented the first CPS transformation for dynamic delimited-control operators,
including control and prompt, that extends a standard CPS transformation. Based on this
new CPS transformation, we have shown how shift and reset simulate dynamic operators
and so are just as expressive.

Now that we know that shift and reset simulate dynamic operators, an implementa-
tion of shift and reset that does not capture undelimited continuations, like Gasbichler
and Sperber’s [44], gives rise to an implementation of dynamic operators that does not cap-
ture undelimited continuations. Given how many delimited-control operators have been (and
will be?) proposed, simulations like the ones presented here are attractive because they do
not require changing the underlying implementation at all before a new operator can be in-
troduced. More generally, because our CPS transformation extends a standard one, it can be
incorporated into CPS-based language implementations.

Like us, Dybvig et al. [30] recently extended the standard CPS transformation to deal
with delimited-control operators other than shift and reset. Also recently, Kiselyov [55]
used shift and reset to implement our three pairs of dynamic operators without capturing
undelimited continuations or keeping mutable state, as we do here—though his solution is
more uniform, and his answer type is a union rather than a function type. As mentioned
in Section 4, Filinski early on represented a monad that supports control and prompt.
A decade later, Biernacki et al. [13] propose a dynamic CPS to account for control and
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prompt. These two pieces of work each lead to yet another closely-related implementation
of control and prompt in terms of shift and reset. We stress the connection between
these four results: Danvy and Filinski designed shift and reset precisely to expose delim-
ited continuations in direct style. In part because shift and reset enjoy a simple CPS trans-
formation as a reasoning tool, they are especially well-studied and widely-applied among
delimited-control operators, for instance to represent monads. By equipping dynamic oper-
ators also with CPS transformations, we hope to make them easier to use and implement in
a way that generalizes to future operators.

5.1 Applications in practical programming

Besides accounting for dynamic control operators, recursive continuations are also useful
in practical programming. For example, the iterative interaction pattern between a coroutine
and its environment is reflected in a recursive continuation [77, Section 6], specifically its
recursive answer type [39, Section 4.2], which can be depicted graphically as a flowchart.
Three special cases of such interactions are

1. the interaction between a Web server and user agents [28, 45, 70];

2. the interaction between a cursor iterating over a collection and its client (as epitomized
in the classic same-fringe problem) [54]; and

3. the interaction between a zipper [1, 50, 51] and its client [56, 57].

Whereas many practical programming examples in the literature call for delimited con-
tinuations to be recursive, very few call for them to be dynamic: usually a dynamically
captured delimited context is invoked right under a delimiter anyway, so it could as well
have been captured statically. Recently, though, several programming examples have been
proposed to contrast static and dynamic delimited continuations:

. copying versus reversing a list [9, Section 4.6] [12, Section 2.3] [13, Section 9];

. generating Pythagorean triples in increasing versus decreasing order [9, Section 5.6];
. depth-first versus breadth-first same-fringe [14, Section 3] [15, Section 4]; and

. depth-first versus breadth-first tree labeling [15, Section 5].

A W N =

We hope that our and other [13, 30, 55] CPS transformations and simulations in terms of
shift and reset will prompt more examples in the future by making dynamic delimited
control easier to reason about, use, and implement.

5.2 Multiple delimiter labels

We have not analyzed Gunter et al.’s control operators cupto and set [47, 48], which gen-
eralize control0 and prompt0 to multiple delimiter labels, or prompts. Briefly, set adds
to the context a delimiter with a specified label; cupto captures the context up to the near-
est dynamically enclosing delimiter with the specified label. This additional flexibility may
enable control operators from different families, such as control and reset, to interact
harmoniously; we have not tackled this issue here.
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In general, labeling delimiters helps the programmer separate concerns and maintain
modularity, but makes it harder to reason about programs. In these regards, it resembles
multiple mutable storage cells and extensible data types like ML exceptions. In fact, Gunter
et al. [48] use cupto and set to implement the latter language features and vice versa. It
would be illuminating to relate the typing and semantics of these features, in contrast to
existing work on undelimited continuations [81]. Moreover, it seems possible to use this
paper’s technique to implement cupto and set without the overhead of undelimited contin-
uations. However, we need more machinery (a simulation relation between machine states,
for example), and we leave it to future work.

One practical use of delimiter labels and recursive continuations is Kiselyov et al.’s
translation from dynamic binding to delimited control [60]. They treat the evaluation context
as a recursive data structure and map each dynamic variable to a delimiter label.

Another application of delimiter labels and potentially recursive continuations lies in
Balat et al.’s type-directed partial evaluator for the A-calculus with products and sums [7].
To efficiently normalize a A-term that uses sums, Balat et al.’s algorithm uses Gunter et al.’s
cupto operator [47, 48], rather than shift as in previous work by Balat and Danvy [6].
As Balat et al.’s algorithm evaluates a term, it keeps a list of possible scope locations at
which future case expressions may be inserted, in the form of delimiter labels for cupto.
(In contrast, Balat and Danvy’s earlier algorithm using shift only considers one scope
location at which to insert a case expression.) If cupto is replaced by shift with a recursive
continuation, then Balat et al.’s list of delimiter labels would be pleasingly identified with
the stack of delimiters on the evaluation context in Gunter et al.’s operational semantics.
An implementation of cupto or shift that does not capture undelimited continuations [58]
would also make the algorithm more efficient [44].
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Appendix: Deriving an abstract machine for control and prompt

In this appendix, we derive an abstract machine for control and prompt from the CPS
equations in Figure 1 and Section 3.2.2. The correctness of the equations then follows from
that of our derivation and the resulting machine.

We begin by turning the equations into an evaluator for control and prompt that passes
environments explicitly. To express inductive data types in Scheme, we use Friedman et al.’s
define-datatype and cases macros [42]. The definition of expression below illustrates
their usage.

; type expression
(define-datatype expression expression?
(var (id symbol?))
(lam (id symbol?) (body expression?))
(app (rator expression?) (rand expression?))
(prompt (body expression?))
(control (id symbol?) (body expression?)))

; type value = value -> context -> l+context -> value
(define value? procedure?)
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; type environment = list (symbol * value)
(define (environment? env)
(or (null? env)
(and (pair? env)
(pair? (car env))
(symbol? (caar env))
(value? (cdar env))
(environment? (cdr env)))))

; type context = value -> l+context -> value
(define context? procedure?)
(define (maybe ?)

(lambda (mc) (or (not mc) (? mc))))

; eval: expression environment -> context -> l+context -> value
(define (eval exp env) (lambda (c) (lambda (mc)
(cases expression exp
(var (id)
((c (cdr (assoc id env))) mc))
(lam (id body)
(let ((f (lambda (x) (eval body (cons (cons id x) env)))))
((c f) mc)))
(app (rator rand)
(((eval rator env)

(lambda (f) ((eval rand env) (lambda (x) ((f x) c)))))
mc))
(prompt (body)
((c (((eval body env) send) #f)) mc))

(control (id body)
(let ((f (lambda (x) (lambda (c2) (lambda (mc2)
(((compose ¢ mc) x) (compose c2 mc2)))))))
(((eval body (cons (cons id f) env)) send) #£)))))))
; evaluate: expression -> value
(define (evaluate exp)

(((eval exp ’()) send) #f))

First, we defunctionalize functional values to yield closures of two kinds: A-abstracted
functions (func) and control-captured contexts (ctxt).

; type value

(define-datatype value value?
(func (id symbol?) (body expression?) (env environment?))
(ctxt (c context?) (mc (maybe context?))))

; eval: expression environment -> context -> l+context -> value
(define (eval exp env) (lambda (c) (lambda (mc)
(cases expression exp

(var (id)

((c (cdr (assoc id env))) mc))

(lam (id body)

(let ((f (func id body env))) ; closure conversion
((c £) mc)))

(app (rator rand)
(((eval rator env)
(lambda (f)
((eval rand env)
(lambda (x)
(cases value f ; closure conversion
(func (id body env)
((eval body (cons (cons id x) env)) c))
(ctxt (cl mcl)
(lambda (mc2)
(((compose cl mcl) x) (compose c mc2)))))))))

mc) )
(prompt (body)
((c (((eval body env) send) #f)) mc))
(control (id body)
(let ((f (ctxt ¢ mc))) ; closure conversion

(((eval body (cons (cons id f) env)) send) #£)))))))
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Second, we introduce metacontinuations (type metacont) and transform the evaluator
to CPS. For clarity, we uncurry context functions and the eval function, so we redefine
the send and compose functions from Section 3.2.1.

; type context = value l+context metacont -> value
(define context? procedure?)

; type metacont = value -> value
(define metacont? procedure?)

; eval: expression environment context l+context metacont -> value
(define (eval exp env c mc d)
(cases expression exp

(var (id)
(c (cdr (assoc id env)) mc d))
(lam (id body)

(c (func id body env) mc d))
(app (rator rand)
(eval rator env
(lambda (f mc d)
(eval rand env
(lambda (x mc d)
(cases value f
(func (id body env)
(eval body (cons (cons id x) env) c mc d))
(ctxt (cl mcl)
((compose cl mcl) x (compose ¢ mc) d))))
mc d))
mc d))
(prompt (body)
(eval body env send #f (lambda (v) (c v mc d))))
(control (id body)
(eval body (cons (cons id (ctxt c mc)) env) send #f d))))

; send: context
(define (send v mc d)
(if mc (mc v #f d) (d v)))

; compose: context l+context -> context
(define (compose c mcl)
(if mcl (lambda (v mc2 d) (c v (compose mcl mc2) d)) c)

; evaluate: expression -> value
(define (evaluate exp)
(eval exp ' () send #f (lambda (v) v)))

Finally, we defunctionalize contexts (of type context) and metacontinuations (of type
metacont) in the CPS evaluator to yield an abstract machine, expressed as first-order, tail-
recursive Scheme code. The intermediate states of this abstract machine are eval, cont,
meta, and the start state is evaluate.

; type context
(define-datatype context context?
(send)
(arg (rand expression?) (env environment?) (c context?))
(fun (f value?) (c context?))
(compose (c context?) (mc (maybe context?))))

; type metacont
(define-datatype metacont metacont?
(done)
(delim (c context?) (mc (maybe context?)) (d metacont?)))

; eval: expression environment context l+context metacont -> value
(define (eval exp env c mc d)
(cases expression exp

(var (id)
(cont ¢ (cdr (assoc id env)) mc d))
(lam (id body)

(cont ¢ (func id body env) mc d))
(app (rator rand)
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(eval rator env (arg rand env c) mc d))
(prompt (body)
(eval body env (send) #f (delim c mc d)))
(control (id body)
(eval body (cons (cons id (ctxt c mc)) env) (send) #f d))))
; cont: context value l+context metacont -> value
(define (cont ¢ v mc d)
(cases context c
(send ()
(if mc (cont mc v #f d)
(meta d v)))
(arg (rand env c)
(eval rand env (fun v c) mc d))
(fun (f c)
(cases value £
(func (id body env)
(eval body (cons (cons id v) env) c mc d))
(ctxt (cl mcl)
(cont (compose cl mcl) v (compose ¢ mc) d))))
(compose (c mcl)
(if mcl (cont ¢ v (compose mcl mc) d)
(cont ¢ vmc d)))))
; meta: metacont value -> value
(define (meta d v)
(cases metacont d
(done ()
v)
(delim (c mc d)
(cont ¢ v mec d))))
; evaluate: expression -> value
(define (evaluate exp)
(eval exp ' () (send) #f (done)))

Biernacki et al. [13, Section 12] also mention this machine. To verify it, we relate it to
Biernacka et al.’s definitional machine for control and prompt [9, 12-15].

1. Our special token #£, of type 1+context, corresponds to their empty context.

2. Our contexts correspond to their contexts. The only interesting case is that our binary
context constructor compose corresponds to their binary function (not a constructor)
for concatenating contexts. That is, our (compose ¢ mc) corresponds to their ¢ xmc.

3. Our metacontinuations correspond to their metacontexts: (done) corresponds to nil, and
(delim ¢ mc d) corresponds to (c*mc) :: d.

4. Our intermediate states eval, cont, and meta correspond to their intermediate states
eval, conty, and cont,, respectively.

Each transition in the definitional machine corresponds to one or more transitions in our
derived machine: the only interesting case is the compose case at the bottom of cont, which
does not loop infinitely because c is finite. Conversely, each transition in our machine is
followed by zero or more further transitions, such that these transitions together correspond
to one transition in the definitional machine. Hence the two machines terminate on corre-
sponding input programs.
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