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Abstract

We propose to represent a probability distribution as a program in a general-purpose
programming language rather than a special language built from scratch. This
approach makes it easier for the probabilistic-reasoning and programming-language
communities to share their work. To demonstrate that this representation is simple
and efficient, we implement inference by variable elimination and importance
sampling using the concepts of reflection, memoization, and continuations.

The embedded approach to probabilistic programming is to build a library that extends a general-
purpose host language with probabilistic constructs. Seen from within the host language, these
embedded constructs are ordinary functions with side effects. For example, the two most important
constructs are dist, a function that maps a list of probability-value pairs to a randomly chosen value,
and fail, a function that takes no input and never returns because it observes an impossible event.
The following program, written in the general-purpose programming language OCaml, expresses the
distribution over a pair of fair coin flips, conditional on at least one of them being true.

(1) let coin_flip () = dist [ (0.5, V true); (0.5, V false) ] in
let x = coin_flip () in
let y = coin_flip () in
if x || y then (x,y) else fail ()

The variables x and y above are host-language variables that represent random variables.

The embedded approach has several advantages over building a probabilistic language from scratch.

e It is easy to learn and implement, because host-language features are reused such as compil-
ers, I/O libraries, database interfaces, timing facilities, data structures, and type checking.

e It can compile stochastic models to machine code. Deterministic parts of the models run as
fast as in the host language, without the overhead imposed by non-embedded interpreters.

e [t treats probability distributions as an abstract container data-type. This treatment makes it
natural to describe distributions over distributions, which are useful for modeling multiagent
interactions with imperfect information.

For the library not to just perform naive rejection sampling, the host language needs certain features
other than random-number generation [2]. We use the delimited control operators shift and reset
in the host language OCaml [5].

Embedded probabilistic programming essentially builds a library of weighted nondeterminism that
turns the host-language compiler into a probabilistic-language compiler, so any improvement in
the host-language implementation results in more efficient inference. To illustrate how inference
algorithms correspond to library implementation strategies and host-language concepts, we present
two implementations: one performing exact inference by enumeration and variable elimination [1],
and one performing approximate inference by importance sampling and evidence pushing [6]. The
implementations are short (totaling 200 lines), expressive, and available online along with tests.



Both implementations use delimited control operators to convert a stochastic program into a search
tree of random choices. Each node in the tree is labeled with the probability mass remaining at that
point for its descendants. Each leaf is either an observation failure or a successful outcome. This tree
can be lazily explored in various ways; in other words, the inference algorithm and the stochastic
program are coroutines, like an operating system and a user process.

Exact inference The simplest inference method is to traverse the tree (say in depth-first order),
enumerate the successful outcomes at the leaves, and gather them into a probability table. This reifi-
cation map from stochastic programs to probability tables performs exact inference by enumeration,
so we call it exact_reify. For example, the OCaml program exact_reify (fun () -> (1)), in
which ‘fun () ->’ makes a function that takes no argument, computes the probability table below.

(2) [(0.25, V (true,true)); (0.25, V (true,false)); (0.25, V (false,true))]

The functions exact_reify and dist are inverses of each other, in that a stochastic program E
denotes the same distribution as dist (exact_reify (fun () -> E)), and a probability table
T is same as exact_reify (fun () -> dist 7). These equivalences are a special case of the
general inverse relationship between reification and reflection [4]. We use this relationship to achieve
variable elimination with an explicit order: Whenever we have a stochastic function £, we can replace
it by the stochastic function

(3) 1let bucket = memo (fun x -> exact_reify (fun () -> f x)) in
fun x -> dist (bucket x)

where memo memoizes a function. This latter stochastic function can then be invoked multiple times
in different branches of the search tree, without recomputing joins each time.

Approximate inference To perform importance sampling, we traverse the same search tree dif-
ferently: we explore a few levels at its top in a breadth-first or most-probable-first manner. The
traversal weeds out shallow observation failures and yields a list of successful outcomes found as
well as open branches yet to be explored. Each successful outcome can be immediately registered
as a sample, weighted by its probability. If there are any open branches, we randomly choose one,
then traverse it as just described after discarding the other branches. The probability of choosing
a branch is proportional to its probability mass. We also remember to scale the importance of all
further samples by the total probability mass of the open branches among which we chose one.

Pfeffer [6] introduces this importance sampling technique as evidence pushing, because it reduces
nondeterminism in the search by pushing observed evidence towards their random cause in a stochastic
program. We achieve evidence pushing by accessing the host language’s call stack. This access is in
fact part of the initial conversion from stochastic programs to search trees using delimited control
operators. In other words, evidence pushing is a form of continuation passing [3].
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