Probabilistic programming using
first-class stores and first-class continuations

Oleg Kiselyov Chung-chieh Shan

FNMOC Rutgers University
oleg@pobox.com ccshan@rutgers.edu
ML workshop

September 26, 2010

Probabilistic inference

| have exactly two kids. What is the probability that
At least one is a girl. my older kid is a girl?

2/15

Probabilistic inference

Model (what) Inference (how)
Pr(Reality)

Reality — Obs, Result ;Pr(Result | Obs = obs)
obs

| have exactly two kids. What is the probability that
At least one is a girl. my older kid is a girl?

2/15

Declarative probabilistic inference

Model (what) Inference (how)
Pr(Reality)

Reality — Obs, Result ;Pr(Result | Obs = obs)
obs

| have exactly two kids. What is the probability that
At least one is a girl. my older kid is a girl?

2/15

Declarative probabilistic inference (UAI 2009, DSL 2009)

Model (what) Inference (how)
Pr(Reality)

Reality — Obs, Result ;Pr(Result | Obs = obs)
obs

| have exactly two kids. What is the probability that
At least one is a girl. my older kid is a girl?

Models and inference
as interacting programs
in the same general-
purpose language

2/15

Declarative probabilistic inference

Model (what) Inference (how)

Pr(Reality)

obs

(UAI 2009, DSL 2009)

Reality — Obs, Result }Pr(Result | Obs = obs)

| have exactly two kids. What is the probability that
At least one is a girl. my older kid is a girl?

let flip = fun p —>
dist [(p, true);
(1.-.p, false)]
in let girll = flip 0.5 in
let girl2 = flip 0.5 in
if girll || girl2
then girll else fail ()

Models and inference
as interacting programs
in the same general-
purpose language

2/15

Declarative probabilistic inference (UAI 2009, DSL 2009)

Model (what) Inference (how)
Pr(Reality)

Reality — Obs, Result ;Pr(Result | Obs = obs)
obs

| have exactly two kids. What is the probability that
At least one is a girl. my older kid is a girl?

normalize (exact_reify (fun () ->

let flip = fun p —>

true 1/2
dist [(p, true); false 1/4
(1.-.p, false)]
in let girll = flip 0.5 in Models and inference
let girl2 = flip 0.5 in as interacting programs
if girll || girl2 in the same general-
then girll else fail ())) purpose language

2/15

Declarative probabilistic inference (UAI 2009, DSL 2009)

Model (what) Inference (how)
Pr(Reality)

Reality — Obs, Result ;Pr(Result | Obs = obs)
obs

| have exactly two kids. What is the probability that
At least one is a girl. my older kid is a girl?

normalize (exact_reify (fun () ->

true 2/3 true 1/2
false 1/3 false 1/4

let flip = fun p —>
dist [(p, true);
(1.-.p, false)]

in let girll = flip 0.5 in Models and inference
let girl2 = flip 0.5 in as interacting programs
if girll || girl2 in the same general-
then girll else fail ())) purpose language

2/15

Declarative probabilistic inference (UAI 2009, DSL 2009)

Model (what) Inference (how)
Pr(Reality)

Reality — Obs, Result ;Pr(Result | Obs = obs)
obs

| have exactly two kids. What is the probability that
At least one is a girl. my older kid is a girl?

normalize (exact_reify (fun () ->

let flip = fun p —>
dist [(p, true);

(1.-.p, false)] <« Expressive models

in let girll = flip 0.5 in and efficient inference
let girl2 = flip 0.5 in as interacting programs
if girll || girl2 in the same general-
then girll else fail ())) purpose language

2/15

Outline

» Expressive models
Reuse existing infrastructure
Nested inference

Efficient inference
First-class continuations
First-class stores

3/15

Motivic development in Beethoven sonatas (Pfeffer 2007)
ﬁ | |

"4 | |
L

Source motif . M ni—

4/15

Motivic development in Beethoven sonatas (Pfeffer 2007)
(I :
Source motif - — — '

4/15

Motivic development in Beethoven sonatas (Pfeffer 2007)

ﬁ | |
.)" 4 | |
Source motif i — ;
I | | N
/ — 7
| U - 7
| S A N
f |
/\
ey P—P—iﬁzl ! ' o

4/15

Motivic development in Beethoven sonatas (Pfeffer 2007)
f) |

.)" 4 |
Source motif i

4/15

Motivic development in Beethoven sonatas (Pfeffer 2007)

o) |
Source motif 7 i —

infer \ / A
h | | |
)" 4 | | |
/\

Destination motif ¢y !

4/15

Motivic development in Beethoven sonatas (Pfeffer 2007)
0 .

"4 |

Source motif | ¢ P |

infer \ /R A
f) | | |
)" 4 |

/\

Destination motif ¢y

Motif pair 1 2 3 4 5 6 7

% correct

Pfeffer 2007 (30 sec) 93 100 28 80 98 100 63
HANSEI (90sec) 98 100 29 87 94 100 77
HANSEI (30sec) 92 99 25 46 72 95 61

Importance sampling using lazy stochastic lists.
4/15

Noisy radar blips for aircraft tracking (Milch et al. 2007)

2
5
3]
infer 8
o
012345867
Blips present and absent Number of planes

5/15

Noisy radar blips for aircraft tracking (Milch et al. 2007)

2
E
3]
infer 8
o
—HN.
123456
Blips present and absent Number of planes

t=1

Particle filter using lazy stochastic coordinates.
5/15

Noisy radar blips for aircraft tracking (Milch et al. 2007)

infer

Probability

12 3 4

Blips present and absent Number of planes
t=2

Particle filter using lazy stochastic coordinates.
5/15

Noisy radar blips for aircraft tracking (Milch et al. 2007)

infer

Probability

3 4

Blips present and absent Number of planes
t=3

Particle filter using lazy stochastic coordinates.
5/15

Models as programs in a general-purpose language

Reuse existing infrastructure!

v

Rich libraries: lists, arrays, database access, /O, ...

v

Type system
Functions as first-class values

v

v

Compiler

v

Debugger

v

Memoization

Implemented independently in Haskell, Scheme, Ruby, Scala . ..

6/15

Models that invoke nested inference

Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in
let coin = fun () -> flip 0.5 || biased in

7/15

Models that invoke nested inference

Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in
let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.

What is the probability that p is at least 0.3?

7/15

Models that invoke nested inference

Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in
let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.

What is the probability that p is at least 0.3?
Answer: 1.

at_least 0.3 true (exact_reify coin)

7/15

Models that invoke nested inference

exact_reify (fun OO ->

let biased = flip 0.5 in
let coin = fun () -> flip 0.5 || biased in

at_least 0.3 true (exact_reify coin))

7/15

Models that invoke nested inference

exact_reify (fun () ->
Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in
let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.
Estimate p by flipping the coin twice.

What is the probability that our estimate of p is at least 0.3?
Answer: 7/8.

at_least 0.3 true (sample 2 coin))

7/15

Models that invoke nested inference

exact_reify (fun () ->
Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in
let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.
Estimate p by flipping the coin twice.

What is the probability that our estimate of p is at least 0.3?
Answer: 7/8.

at_least 0.3 true (sample 2 coin))

Returns a distribution, using dist like models do.
Works with observation, recursion, memoization.
Metareasoning without interpretive overhead.
7/15

Outline

Expressive models
Reuse existing infrastructure
Nested inference

» Efficient inference
First-class continuations
First-class stores

8/15

Reifying a model into a lazy search tree

/(false >\ not syntax tree

/.8 .2\ /-6 ~3\ not call tree

true

V of ’a | C of (unit -> ’a tree)
(prob * ’a branch) list

type ’a branch
and ’a tree

9/15

Reifying a model into a lazy search tree

not call tree

.3/.|L\.5
/(false >\ not syntax tree
8 .2 6 .3
/N /N

true

Depth-first enumeration = exact inference
Random dive = rejection sampling
Dive with look-ahead = importance sampling

9/15

Reifying a model into a lazy search tree

S unit ->bool
/l\ reflect

KL
[N N

true

Represent a probability and state monad (Filinski 1994)
using first-class delimited continuations, aka clonable threads:

» Model runs inside a thread.
» dist clones the thread.
» fail kills the thread.

Models’ code stays opaque. Deterministic parts run at full speed.

Nesting works.
9/15

Reifying a model into a lazy search tree

reify
simplify <>® unit ->bool

s reflect
/ N\

true false

reflect o simplify o reify = table, chart, bucket
reflect o sample o reify = particle filter

9/15

The library so far

V of ’a | C of (unit -> ’a tree)
(prob * ’a branch) list

type ’a branch
and ’a tree

let reify m = reset (fun OO -> [(1.0, V (m O)I)

let dist ch = shift (fun k —>
List.map (fun (p,v) -> (p, C (fun () -> k v))) ch)

10/15

The library so far

V of ’a | C of (unit -> ’a tree)
(prob * ’a branch) list

type ’a branch
and ’a tree

let prompt = new_prompt ()

let reify m = reset prompt (fun () -> [(1.0, V (m O)1)

let dist ch = shift prompt (fun k ->
List.map (fun (p,v) -> (p, C (fun () -> k v))) ch)

10/15

First-class continuations

type req = Done | Choice of (prob * (unit -> req)) list

let reify m =
let answer = ref None in
let rec interp req = match req with
| Done ->
let Some v = lanswer in [(1.0, V v)]
| Choice ch ->
List.map (fun (p,m) ->
(p, C (fun OO -> interp (m (0))))

ch
in interp (reset prompt (fun () ->
answer := Some (m ()); Done))

let dist ch = shift prompt (fun k ->
Choice (List.map (fun (p,v) -> (p, fun OO -> k v)) ch))
11/15

Memoization

type gender = Female | Male

let kid = memo (fun n -> dist [(0.5, Female);
(0.5, Male)])
in if kid 1 = Female || kid 2 = Female
then kid 1 else fail ())

12/15

Memoization

type gender = Female | Male

let kid = memo (fun n -> dist [(0.5, Female);
(0.5, Male)])
in if kid 1 = Female || kid 2 = Female
then kid 1 else fail ())

Used to speed up inference (ICFP 2009)
N

PN

5
/N /N

true true false

by delaying choices until observed

12/15

Memoization

type gender = Female | Male

let kid = memo (fun n -> dist [(0.5, Female);
(0.5, Male)])
in if kid 1 = Female || kid 2 = Female
then kid 1 else fail ())

Used to speed up inference (ICFP 2009)

/.5/\.5
true 1;)\5
/7 N\
false

by delaying choices until observed

12/15

Memoization

type gender = Female | Male

let kid = memo (fun n -> dist [(0.5, Female);
(0.5, Male)])
in if kid 1 = Female || kid 2 = Female
then kid 1 else fail ())

Used to speed up inference (ICFP 2009)
and to express nonparametric distributions (Goodman et al. 2008)

Lazy evaluation is memo (fun () -> ...)

Each search-tree node must keep its own store (‘thread-local’)
Nesting creates regions of memo cells (ICFP 2006)

12/15

Memoization

type gender = Female | Male

let kid = memo (fun n -> dist [(0.5, Female);
(0.5, Male)])
in if kid 1 = Female || kid 2 = Female
then kid 1 else fail ())

Used to speed up inference (ICFP 2009)
and to express nonparametric distributions (Goodman et al. 2008)

Lazy evaluation is m

Delimited D ic Bindi
Each search-tree nc climited Dynamic Bincing

Nesti ng CreateS reg Olelji;l(\;:‘iyov Chung-chvieh Shan Amr Sahry

Rutgers University Indiana University
oleg@pobox.com ceshan@cs.rutgers.edu sabry@indiana.edu
Abstract to any hlm.non d»n amic variables lc \ditional data into

face. This mech-
Dynanic binding and delimied control are useful ogetherin many

settings, including Web applicati se cursors, and mobile
code. We examine this pair of features 1o show that
the semantics of their interaction is ill-defined yet not expressive

applied to pdl.\mcreh such as line width, output por
coding, and error handler. Moreover, a dynamic variable lets us not
‘ust provide but also change the environment in which a piece of

First-class stores: interface

module Memory = struct
type ’a loc
type t
val newm : t
val new_loc : unit -> ’a loc

val mref : ’a loc -> t -> ’a (* throws Not_found *)
val mset : ’a loc -> ’a -> t -> t
end

13/15

First-class stores: usage

let reify m =
let answer = ref None in
let rec interp req = match req with
| Done ->
let Some v = lanswer in [(1.0, V v)]
| Choice ch ->
List.map (fun (p,m) ->
(p, C (fun () -> interp (m (0))))
ch
in
let mem = !thread_local in
thread_local := Memory.newm;
let req = reset prompt (fun () ->
answer := Some (m ()); Domne) in
thread_local := mem;
interp req
14/15

Recap

Expressive models and efficient inference
as interacting programs
in the same general-purpose language

We want first-class delimited continuations and
(garbage-collector support for) first-class stores

HANSE| http://okmij.org/ftp/kakuritu/

15/15

http://okmij.org/ftp/kakuritu/

Recap

Expressive models and efficient inference
as interacting programs
in the same general-purpose language

We want first-class delimited continuations and
(garbage-collector support for) first-class stores

HANSE| http://okmij.org/ftp/kakuritu/

15/15

http://okmij.org/ftp/kakuritu/

	Expressive models
	Reuse existing infrastructure
	Nested inference

	Efficient inference
	First-class continuations
	First-class stores

