
Probabilistic programming using
first-class stores and first-class continuations

Oleg Kiselyov
FNMOC

oleg@pobox.com

Chung-chieh Shan
Rutgers University

ccshan@rutgers.edu

ML workshop
September 26, 2010

2/15

Probabilistic inference

(UAI 2009, DSL 2009)

Model (what) Inference (how)

Pr(Reality)

Reality ! Obs;Result

9=
;Pr(Result j Obs = obs)

obs

I have exactly two kids. What is the probability that
At least one is a girl. my older kid is a girl?

normalize (exact_reify (fun () ->

let flip = fun p ->

true 2=3
false 1=3

true 1=2
false 1=4

dist [(p, true);

(1.-.p, false)]

in let girl1 = flip 0.5 in

let girl2 = flip 0.5 in

if girl1 || girl2

then girl1 else fail ()))

Models and inference
as interacting programs

in the same general-
purpose language

2/15

Probabilistic inference

(UAI 2009, DSL 2009)

Model (what) Inference (how)

Pr(Reality)

Reality ! Obs;Result

9=
;Pr(Result j Obs = obs)

obs

I have exactly two kids. What is the probability that
At least one is a girl. my older kid is a girl?

normalize (exact_reify (fun () ->

let flip = fun p ->

true 2=3
false 1=3

true 1=2
false 1=4

dist [(p, true);

(1.-.p, false)]

in let girl1 = flip 0.5 in

let girl2 = flip 0.5 in

if girl1 || girl2

then girl1 else fail ()))

Models and inference
as interacting programs

in the same general-
purpose language

2/15

Declarative probabilistic inference

(UAI 2009, DSL 2009)

Model (what) Inference (how)

Pr(Reality)

Reality ! Obs;Result

9=
;Pr(Result j Obs = obs)

obs

I have exactly two kids. What is the probability that
At least one is a girl. my older kid is a girl?

normalize (exact_reify (fun () ->

let flip = fun p ->

true 2=3
false 1=3

true 1=2
false 1=4

dist [(p, true);

(1.-.p, false)]

in let girl1 = flip 0.5 in

let girl2 = flip 0.5 in

if girl1 || girl2

then girl1 else fail ()))

Models and inference
as interacting programs

in the same general-
purpose language

2/15

Declarative probabilistic inference (UAI 2009, DSL 2009)

Model (what) Inference (how)

Pr(Reality)

Reality ! Obs;Result

9=
;Pr(Result j Obs = obs)

obs

I have exactly two kids. What is the probability that
At least one is a girl. my older kid is a girl?

normalize (exact_reify (fun () ->

let flip = fun p ->

true 2=3
false 1=3

true 1=2
false 1=4

dist [(p, true);

(1.-.p, false)]

in let girl1 = flip 0.5 in

let girl2 = flip 0.5 in

if girl1 || girl2

then girl1 else fail ()))

Models and inference
as interacting programs

in the same general-
purpose language

2/15

Declarative probabilistic inference (UAI 2009, DSL 2009)

Model (what) Inference (how)

Pr(Reality)

Reality ! Obs;Result

9=
;Pr(Result j Obs = obs)

obs

I have exactly two kids. What is the probability that
At least one is a girl. my older kid is a girl?

normalize (exact_reify (fun () ->

let flip = fun p ->

true 2=3
false 1=3

true 1=2
false 1=4

dist [(p, true);

(1.-.p, false)]

in let girl1 = flip 0.5 in

let girl2 = flip 0.5 in

if girl1 || girl2

then girl1 else fail ()

))

Models and inference
as interacting programs

in the same general-
purpose language

2/15

Declarative probabilistic inference (UAI 2009, DSL 2009)

Model (what) Inference (how)

Pr(Reality)

Reality ! Obs;Result

9=
;Pr(Result j Obs = obs)

obs

I have exactly two kids. What is the probability that
At least one is a girl. my older kid is a girl?

normalize (exact_reify (fun () ->

let flip = fun p ->

true 2=3
false 1=3

true 1=2
false 1=4dist [(p, true);

(1.-.p, false)]

in let girl1 = flip 0.5 in

let girl2 = flip 0.5 in

if girl1 || girl2

then girl1 else fail ()))

Models and inference
as interacting programs

in the same general-
purpose language

2/15

Declarative probabilistic inference (UAI 2009, DSL 2009)

Model (what) Inference (how)

Pr(Reality)

Reality ! Obs;Result

9=
;Pr(Result j Obs = obs)

obs

I have exactly two kids. What is the probability that
At least one is a girl. my older kid is a girl?

normalize (exact_reify (fun () ->

let flip = fun p -> true 2=3
false 1=3

true 1=2
false 1=4dist [(p, true);

(1.-.p, false)]

in let girl1 = flip 0.5 in

let girl2 = flip 0.5 in

if girl1 || girl2

then girl1 else fail ()))

Models and inference
as interacting programs

in the same general-
purpose language

2/15

Declarative probabilistic inference (UAI 2009, DSL 2009)

Model (what) Inference (how)

Pr(Reality)

Reality ! Obs;Result

9=
;Pr(Result j Obs = obs)

obs

I have exactly two kids. What is the probability that
At least one is a girl. my older kid is a girl?

normalize (exact_reify (fun () ->

let flip = fun p ->

true 2=3
false 1=3

true 1=2
false 1=4

dist [(p, true);

(1.-.p, false)]

in let girl1 = flip 0.5 in

let girl2 = flip 0.5 in

if girl1 || girl2

then girl1 else fail ()))

Expressive models
and efficient inference

as interacting programs
in the same general-
purpose language

3/15

Outline

I Expressive models
Reuse existing infrastructure
Nested inference

Efficient inference
First-class continuations
First-class stores

4/15

Motivic development in Beethoven sonatas (Pfeffer 2007)

��� � ��Source motif � � � � � �

4/15

Motivic development in Beethoven sonatas (Pfeffer 2007)

����Source motif � ���� ���

4/15

Motivic development in Beethoven sonatas (Pfeffer 2007)

�

�� ��

� �

�

�

�

�

� � ��

�

Source motif �

�

�

�

4/15

Motivic development in Beethoven sonatas (Pfeffer 2007)

�

��

�

�

�

�Source motif

�

� �����

�

�

�

�

�

4/15

Motivic development in Beethoven sonatas (Pfeffer 2007)

infer

�

�

�

�

�

Destination motif

Source motif

�

�

�

����

�

�

�

�

�

��

Motif pair 1 2 3 4 5 6 7

% correct
Pfeffer 2007 (30 sec) 93 100 28 80 98 100 63
HANSEI (90 sec) 98 100 29 87 94 100 77
HANSEI (30 sec) 92 99 25 46 72 95 61

Importance sampling using lazy stochastic lists.

4/15

Motivic development in Beethoven sonatas (Pfeffer 2007)

infer

�

�

�

�

�

Destination motif

Source motif

�

�

�

����

�

�

�

�

�

��

Motif pair 1 2 3 4 5 6 7

% correct
Pfeffer 2007 (30 sec) 93 100 28 80 98 100 63
HANSEI (90 sec) 98 100 29 87 94 100 77
HANSEI (30 sec) 92 99 25 46 72 95 61

Importance sampling using lazy stochastic lists.

5/15

Noisy radar blips for aircraft tracking (Milch et al. 2007)

Blips present and absent

infer

0 1 2 3 4 5 6 7

1 2 3 4 5 61 2 3 43 4

Number of planes
P

ro
ba

bi
lit

y

Particle filter using lazy stochastic coordinates.

5/15

Noisy radar blips for aircraft tracking (Milch et al. 2007)

Blips present and absent
t = 1

infer

0 1 2 3 4 5 6 7

1 2 3 4 5 6

1 2 3 43 4

Number of planes
P

ro
ba

bi
lit

y

Particle filter using lazy stochastic coordinates.

5/15

Noisy radar blips for aircraft tracking (Milch et al. 2007)

Blips present and absent
t = 1, t = 2

infer

0 1 2 3 4 5 6 71 2 3 4 5 6

1 2 3 4

3 4

Number of planes
P

ro
ba

bi
lit

y

Particle filter using lazy stochastic coordinates.

5/15

Noisy radar blips for aircraft tracking (Milch et al. 2007)

Blips present and absent
t = 1, t = 2, t = 3

infer

0 1 2 3 4 5 6 71 2 3 4 5 61 2 3 4

3 4

Number of planes
P

ro
ba

bi
lit

y

Particle filter using lazy stochastic coordinates.

6/15

Models as programs in a general-purpose language

Reuse existing infrastructure!

I Rich libraries: lists, arrays, database access, I/O, . . .
I Type system
I Functions as first-class values
I Compiler
I Debugger
I Memoization

Implemented independently in Haskell, Scheme, Ruby, Scala . . .

7/15

Models that invoke nested inference

exact_reify (fun () ->

Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in

let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.

Estimate p by flipping the coin twice.

What is the probability that p is at least 0:3?
Answer: 1.

at_least 0.3 true (exact_reify coin)

)

Returns a distribution, using dist like models do.
Works with observation, recursion, memoization.
Metareasoning without interpretive overhead.

7/15

Models that invoke nested inference

exact_reify (fun () ->

Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in

let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.

Estimate p by flipping the coin twice.

What is the probability that p is at least 0:3?

Answer: 1.

at_least 0.3 true (exact_reify coin)

)

Returns a distribution, using dist like models do.
Works with observation, recursion, memoization.
Metareasoning without interpretive overhead.

7/15

Models that invoke nested inference

exact_reify (fun () ->

Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in

let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.

Estimate p by flipping the coin twice.

What is the probability that p is at least 0:3?
Answer: 1.

at_least 0.3 true (exact_reify coin)

)

Returns a distribution, using dist like models do.
Works with observation, recursion, memoization.
Metareasoning without interpretive overhead.

7/15

Models that invoke nested inference

exact_reify (fun () ->

Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in

let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.

Estimate p by flipping the coin twice.

What is the probability that p is at least 0:3?
Answer: 1.

at_least 0.3 true (exact_reify coin))

Returns a distribution, using dist like models do.
Works with observation, recursion, memoization.
Metareasoning without interpretive overhead.

7/15

Models that invoke nested inference

exact_reify (fun () ->

Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in

let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.
Estimate p by flipping the coin twice.
What is the probability that our estimate of p is at least 0:3?
Answer: 7/8.

at_least 0.3 true (sample 2 coin))

Returns a distribution, using dist like models do.
Works with observation, recursion, memoization.
Metareasoning without interpretive overhead.

7/15

Models that invoke nested inference

exact_reify (fun () ->

Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in

let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.
Estimate p by flipping the coin twice.
What is the probability that our estimate of p is at least 0:3?
Answer: 7/8.

at_least 0.3 true (sample 2 coin))

Returns a distribution, using dist like models do.
Works with observation, recursion, memoization.
Metareasoning without interpretive overhead.

8/15

Outline

Expressive models
Reuse existing infrastructure
Nested inference

I Efficient inference
First-class continuations
First-class stores

9/15

Reifying a model into a lazy search tree

true

.8 .2

.3

false

.2

...

.6

...

.3

.5

not syntax tree
not call tree

unit -> bool

reify

reflect
simplify

type ’a branch = V of ’a | C of (unit -> ’a tree)

and ’a tree = (prob * ’a branch) list

9/15

Reifying a model into a lazy search tree

true

.8 .2

.3

false

.2

...

.6

...

.3

.5

not syntax tree
not call tree

unit -> bool

reify

reflect
simplify

Depth-first enumeration = exact inference
Random dive = rejection sampling

Dive with look-ahead = importance sampling

9/15

Reifying a model into a lazy search tree

true

.8 .2

.3

false

.2

...

.6

...

.3

.5

not syntax tree
not call tree

unit -> bool

reify

reflect

simplify

Represent a probability and state monad (Filinski 1994)
using first-class delimited continuations, aka clonable threads:

I Model runs inside a thread.
I dist clones the thread.
I fail kills the thread.

Models’ code stays opaque. Deterministic parts run at full speed.
Nesting works.

9/15

Reifying a model into a lazy search tree

true

.8 .2

.3

false

.2

...

.6

...

.3

.5

true

.24

false

.5

not syntax tree
not call tree

unit -> bool

reify

reflect
simplify

reflect � simplify � reify = table, chart, bucket
reflect � sample � reify = particle filter

10/15

The library so far

type ’a branch = V of ’a | C of (unit -> ’a tree)

and ’a tree = (prob * ’a branch) list

let prompt = new_prompt ()

let reify m = reset (fun () -> [(1.0, V (m ())])

let dist ch = shift (fun k ->

List.map (fun (p,v) -> (p, C (fun () -> k v))) ch)

10/15

The library so far

type ’a branch = V of ’a | C of (unit -> ’a tree)

and ’a tree = (prob * ’a branch) list

let prompt = new_prompt ()

let reify m = reset prompt (fun () -> [(1.0, V (m ())])

let dist ch = shift prompt (fun k ->

List.map (fun (p,v) -> (p, C (fun () -> k v))) ch)

11/15

First-class continuations

type req = Done | Choice of (prob * (unit -> req)) list

let reify m =

let answer = ref None in

let rec interp req = match req with

| Done ->

let Some v = !answer in [(1.0, V v)]

| Choice ch ->

List.map (fun (p,m) ->

(p, C (fun () -> interp (m ()))))

ch

in interp (reset prompt (fun () ->

answer := Some (m ()); Done))

let dist ch = shift prompt (fun k ->

Choice (List.map (fun (p,v) -> (p, fun () -> k v)) ch))

12/15

Memoization

type gender = Female | Male

let kid = memo (fun n -> dist [(0.5, Female);

(0.5, Male)])

in if kid 1 = Female || kid 2 = Female

then kid 1 else fail ())

12/15

Memoization

type gender = Female | Male

let kid = memo (fun n -> dist [(0.5, Female);

(0.5, Male)])

in if kid 1 = Female || kid 2 = Female

then kid 1 else fail ())

Used to speed up inference (ICFP 2009)

true

.5

true

.5

.5

false

.5 .5

.5

by delaying choices until observed

12/15

Memoization

type gender = Female | Male

let kid = memo (fun n -> dist [(0.5, Female);

(0.5, Male)])

in if kid 1 = Female || kid 2 = Female

then kid 1 else fail ())

Used to speed up inference (ICFP 2009)

true

.5

true

.5

.5

false

.5 .5

.5

true

by delaying choices until observed

12/15

Memoization

type gender = Female | Male

let kid = memo (fun n -> dist [(0.5, Female);

(0.5, Male)])

in if kid 1 = Female || kid 2 = Female

then kid 1 else fail ())

Used to speed up inference (ICFP 2009)
and to express nonparametric distributions (Goodman et al. 2008)

Lazy evaluation is memo (fun () -> ...)

Each search-tree node must keep its own store (‘thread-local’)
Nesting creates regions of memo cells (ICFP 2006)

Delimited Dynamic Binding

Oleg Kiselyov
FNMOC

oleg@pobox.com

Chung-chieh Shan
Rutgers University

ccshan@cs.rutgers.edu

Amr Sabry
Indiana University

sabry@indiana.edu

Abstract
Dynamic binding and delimited control are useful together in many
settings, including Web applications, database cursors, and mobile
code. We examine this pair of language features to show that
the semantics of their interaction is ill-defined yet not expressive
enough for these uses.

We solve this open and subtle problem. We formalise a typed
language DB+DC that combines a calculus DB of dynamic binding
and a calculus DC of delimited control. We argue from theoretical
and practical points of view that its semantics should be based
on delimited dynamic binding: capturing a delimited continuation
closes over part of the dynamic environment, rather than all or
none of it; reinstating the captured continuation supplements the
dynamic environment, rather than replacing or inheriting it. We
introduce a type- and reduction-preserving translation from DB +
DC to DC, which proves that delimited control macro-expresses
dynamic binding. We use this translation to implement DB+DC in
Scheme, OCaml, and Haskell.

We extend DB + DC with mutable dynamic variables and a
facility to obtain not only the latest binding of a dynamic variable
but also older bindings. This facility provides for stack inspection
and (more generally) folding over the execution context as an
inductive data structure.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Control structures

General Terms Languages, Theory

Keywords Dynamic binding, delimited continuations, monads

1. Introduction
A dynamic variable is a variable whose association with a value
exists only within the dynamic extent of an expression, that is,
while control remains within that expression. If several associations
exist for the same variable at the same time, the latest one takes
effect. Such association is called a dynamic binding. The scope
of a dynamic variable—where in a program it is used—cannot
be determined statically, so it is called dynamic scope. We follow
Moreau’s definition of these terms [46]. We also call a dynamic
variable a parameter.

Dynamic binding associates data with the current execution
context (the “stack”). Because the context is an implicit argument

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’06 September 16–21, 2006, Portland, Oregon, USA.
Copyright c© 2006 ACM 1-59593-309-3/06/0009. . . $5.00.

to any function, dynamic variables let us pass additional data into
a function and its callees without bloating its interface. This mech-
anism especially helps to modularise and separate concerns when
applied to parameters such as line width, output port, character en-
coding, and error handler. Moreover, a dynamic variable lets us not
just provide but also change the environment in which a piece of
code executes, without changing the code itself. For example, on
a UNIX/POSIX system, we can redirect a program’s output from
the console to a network connection without changing the program.
Another example is the modular interposition on library functions
using dynamic loading. In general, dynamic binding generalises
global state and the singleton pattern to multiple application in-
stances that may coexist in the same execution environment.

The crucial property of dynamic variables that gives rise to dy-
namic scope is that dynamic bindings are not captured in a lexical
closure. This absence of closure makes dynamic variables essential
for many useful abstractions, even in languages that rightfully pride
themselves on their λ-calculus lineage. For example:

1. If we compile a program while redirecting the compiler’s output
to a file, the compiled program should not send its output to the
same file (or, for that matter, use the working directory where
the compilation took place).

run (dlet output = file in compile source) (1)

The expression “dlet output = . . . in . . . ” above is analogous to
with-output-to-file in Scheme and to output redirection
in UNIX/POSIX.

2. If we create a closure with an exception handler in effect, an
exception raised when the created closure is invoked later may
not be handled by the same handler.

dlet handler = h1 in
(
(dlet handler = h2 in λx. throw x) 0

)
(2)

The expression “dlet handler = . . . in . . . ” above is analogous
to exception-handling forms like catch and try in various
languages [46].

3. A migrated piece of mobile code should look to its new host for
OS services such as gethostname (see Section 4.2.1).

4. A resumed server-side Web application should look to its
new request-handling thread for Web-server services such as
getOutputStream (see Section 4.2.2).

The absence of closure is a kind of environmental acquisition
[31, 11], where object containment is defined by caller-callee re-
lationships at run time.

Because dynamic variables lack closure, they are harder than
lexical variables to reason about and implement, especially if they
are mutable or there are control effects. When control effects are
present, the execution context is no longer maintained according
to a stack discipline, so it is unclear what it means to associate
data with the context. This problem is acute because dynamic vari-
ables and control effects are useful in many of the same areas; it

12/15

Memoization

type gender = Female | Male

let kid = memo (fun n -> dist [(0.5, Female);

(0.5, Male)])

in if kid 1 = Female || kid 2 = Female

then kid 1 else fail ())

Used to speed up inference (ICFP 2009)
and to express nonparametric distributions (Goodman et al. 2008)

Lazy evaluation is memo (fun () -> ...)

Each search-tree node must keep its own store (‘thread-local’)
Nesting creates regions of memo cells (ICFP 2006)

Delimited Dynamic Binding

Oleg Kiselyov
FNMOC

oleg@pobox.com

Chung-chieh Shan
Rutgers University

ccshan@cs.rutgers.edu

Amr Sabry
Indiana University

sabry@indiana.edu

Abstract
Dynamic binding and delimited control are useful together in many
settings, including Web applications, database cursors, and mobile
code. We examine this pair of language features to show that
the semantics of their interaction is ill-defined yet not expressive
enough for these uses.

We solve this open and subtle problem. We formalise a typed
language DB+DC that combines a calculus DB of dynamic binding
and a calculus DC of delimited control. We argue from theoretical
and practical points of view that its semantics should be based
on delimited dynamic binding: capturing a delimited continuation
closes over part of the dynamic environment, rather than all or
none of it; reinstating the captured continuation supplements the
dynamic environment, rather than replacing or inheriting it. We
introduce a type- and reduction-preserving translation from DB +
DC to DC, which proves that delimited control macro-expresses
dynamic binding. We use this translation to implement DB+DC in
Scheme, OCaml, and Haskell.

We extend DB + DC with mutable dynamic variables and a
facility to obtain not only the latest binding of a dynamic variable
but also older bindings. This facility provides for stack inspection
and (more generally) folding over the execution context as an
inductive data structure.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Control structures

General Terms Languages, Theory

Keywords Dynamic binding, delimited continuations, monads

1. Introduction
A dynamic variable is a variable whose association with a value
exists only within the dynamic extent of an expression, that is,
while control remains within that expression. If several associations
exist for the same variable at the same time, the latest one takes
effect. Such association is called a dynamic binding. The scope
of a dynamic variable—where in a program it is used—cannot
be determined statically, so it is called dynamic scope. We follow
Moreau’s definition of these terms [46]. We also call a dynamic
variable a parameter.

Dynamic binding associates data with the current execution
context (the “stack”). Because the context is an implicit argument

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’06 September 16–21, 2006, Portland, Oregon, USA.
Copyright c© 2006 ACM 1-59593-309-3/06/0009. . . $5.00.

to any function, dynamic variables let us pass additional data into
a function and its callees without bloating its interface. This mech-
anism especially helps to modularise and separate concerns when
applied to parameters such as line width, output port, character en-
coding, and error handler. Moreover, a dynamic variable lets us not
just provide but also change the environment in which a piece of
code executes, without changing the code itself. For example, on
a UNIX/POSIX system, we can redirect a program’s output from
the console to a network connection without changing the program.
Another example is the modular interposition on library functions
using dynamic loading. In general, dynamic binding generalises
global state and the singleton pattern to multiple application in-
stances that may coexist in the same execution environment.

The crucial property of dynamic variables that gives rise to dy-
namic scope is that dynamic bindings are not captured in a lexical
closure. This absence of closure makes dynamic variables essential
for many useful abstractions, even in languages that rightfully pride
themselves on their λ-calculus lineage. For example:

1. If we compile a program while redirecting the compiler’s output
to a file, the compiled program should not send its output to the
same file (or, for that matter, use the working directory where
the compilation took place).

run (dlet output = file in compile source) (1)

The expression “dlet output = . . . in . . . ” above is analogous to
with-output-to-file in Scheme and to output redirection
in UNIX/POSIX.

2. If we create a closure with an exception handler in effect, an
exception raised when the created closure is invoked later may
not be handled by the same handler.

dlet handler = h1 in
(
(dlet handler = h2 in λx. throw x) 0

)
(2)

The expression “dlet handler = . . . in . . . ” above is analogous
to exception-handling forms like catch and try in various
languages [46].

3. A migrated piece of mobile code should look to its new host for
OS services such as gethostname (see Section 4.2.1).

4. A resumed server-side Web application should look to its
new request-handling thread for Web-server services such as
getOutputStream (see Section 4.2.2).

The absence of closure is a kind of environmental acquisition
[31, 11], where object containment is defined by caller-callee re-
lationships at run time.

Because dynamic variables lack closure, they are harder than
lexical variables to reason about and implement, especially if they
are mutable or there are control effects. When control effects are
present, the execution context is no longer maintained according
to a stack discipline, so it is unclear what it means to associate
data with the context. This problem is acute because dynamic vari-
ables and control effects are useful in many of the same areas; it

13/15

First-class stores: interface

module Memory = struct

type ’a loc

type t

val newm : t

val new_loc : unit -> ’a loc

val mref : ’a loc -> t -> ’a (* throws Not_found *)

val mset : ’a loc -> ’a -> t -> t

end

14/15

First-class stores: usage

let reify m =

let answer = ref None in

let rec interp req = match req with

| Done ->

let Some v = !answer in [(1.0, V v)]

| Choice ch ->

List.map (fun (p,m) ->

(p, C (fun () -> interp (m ()))))

ch

in

let mem = !thread_local in

thread_local := Memory.newm;

let req = reset prompt (fun () ->

answer := Some (m ()); Done) in

thread_local := mem;

interp req

15/15

Recap

Expressive models and efficient inference
as interacting programs

in the same general-purpose language

We want first-class delimited continuations and
(garbage-collector support for) first-class stores

HANSEI http://okmij.org/ftp/kakuritu/

http://okmij.org/ftp/kakuritu/

15/15

Recap

Expressive models and efficient inference
as interacting programs

in the same general-purpose language

We want first-class delimited continuations and
(garbage-collector support for) first-class stores

HANSEI http://okmij.org/ftp/kakuritu/

http://okmij.org/ftp/kakuritu/

	Expressive models
	Reuse existing infrastructure
	Nested inference

	Efficient inference
	First-class continuations
	First-class stores

