
Lifted inference: normalizing loops by evaluation

Oleg Kiselyov
FNMOC

Monterey, CA, USA
oleg@pobox.com

Chung-chieh Shan
Rutgers University

Piscataway, NJ, USA
ccshan@cs.rutgers.edu

Abstract

Many loops in probabilistic inference map almost every
individual in their domain to the same result. Running such
loops symbolically takes time sublinear in the domain size.
Using normalization by evaluation with first-class delim-
ited continuations, we lift inference procedures to reap this
speed-up without interpretive overhead. To express nested
loops, we use multiple control delimiters for metacircular
interpretation. To express loops over a powerset domain,
we convert nested loops over a subset to unnested loops.

1. Introduction

Probabilistic inference is a popular and powerful way to
make decisions under uncertainty in AI [19]. The basic ap-
proach is to specify a probability distribution and devise
procedures to answer queries on the distribution, such as
to compute or approximate the expected value of a random
variable. The typical query concerns a conditional distri-
bution: the condition restricts the query to those possible
worlds that match the evidence we have observed and the
action we are planning. For example, having specified a
probability distribution over how people transmit diseases,
we might then compute the risk of my being infected with
swine flu, conditional on known diagnoses and my plan to
take a stroll.

Many distributions used for realistic decision-making
concern numerous individuals (such as people, diseases, ve-
hicles, or discourse referents) yet place few specific condi-
tions on these individuals. For example, there are numerous
people in the world, yet few are known to have or not have
a disease. To express such distributions compactly and an-
swer queries on them efficiently, AI researchers have moved
from propositional to first-order representations and devised
algorithms to match [10]. In particular, lifted inference al-
gorithms take advantage of logic variables to avoid repeated
computation [20, 4, 17, 22].

Our goal in this paper is to lift inference automatically.
To establish this goal, the rest of this introduction first uses
an example to explain lifted inference.

The examples of distributions in this paper are all finite.
A finite distribution is a finite set of possible worlds, each
assigned a weight. (The weights should sum up to one, but
we need not worry about that.) As in modal logic, differ-
ent propositions – known as Boolean random variables –
may hold in each world. For example, to study a certain
disease, we may postulate the Boolean random variables I,
whether the disease is infectious, and S(x), whether the per-
son x has the disease. There are as many variables of the
first-order form S(x) as there are individuals, say n. Because
any assignment of Boolean values to these n+1 variables is
in principle possible, our distribution contains 2n+1 worlds,
one for each assignment.

A typical way to define a distribution is to specify the
weight of a world as a product of factors. Each factor is a
function of the values of a few random variables. In the ex-
ample, we may specify that the weight of a world is the
product of the following 2n factors: ‘4 if I ∧¬S(x)’ for
each x (because it is more usual to not have an infectious
disease than to have it) and ‘9 if ¬I∧¬S(x)’ for each x (be-
cause it is much more usual to not have a non-infectious
disease than to have it).

The probability Pr(A) of a proposition A is the total
weight of the worlds where A holds. For example, if we
care about Bob, we might want to find Pr(S(b)), the prob-
ability that Bob is sick. By definition, it is the total weight
of the worlds where S(b) holds. More often, however, we
want our probabilistic deliberations to take some observed
evidence into account. For example, suppose we know that
Alice is healthy. We might then want to find the conditional
probability that Bob is sick given that Alice is healthy:

Pr(S(b) |¬S(a)) =
Pr(S(b)∧¬S(a))

Pr(¬S(a))
. (1)

In words, this ratio is the proportional weight of the worlds
where Bob is sick among the worlds where Alice is healthy.

Conditions imposed by observed evidence, such as
¬S(a), are typically specified as additional factors by which
to scale the worlds’ weights. In the example, knowing that
Alice is healthy, we can add the factor ‘0 if S(a)’. To find
the conditional probability (1), it is standard to compute the
numerator Pr(S(b)∧¬S(a)) as well as Pr(¬S(b)∧¬S(a));
the sum of the two probabilities is the denominator. For-
mally, we want to compute the number

∑
I

∑
S(z)

for each z 6= b

((
∏I∧¬S(x) 4

)(
∏¬I∧¬S(x) 9

)(
∏S(a) 0

))
(2)

for each of the 2 possible values of S(b), true and false. The
product above is the weight of a world; the sum turns it into
a probability. Each ∏ loops over propositions that hold; for
example, the product ∏I∧¬S(x) 4 is 1 if I is false and 4m if I
is true, where m is the number of healthy people. Because
we only care about (the conditional probability of) the vari-
able S(b), we sum over assignments to all other variables:
the first ∑ loops over the 2 possible values of I; the second
∑ loops over the 2n−1 possible values of S(z) for every z
except b (so the product is not in the scope of z). In other
words, we project away all variables but S(b).

If we compute (2) by naively enumerating worlds, it
would take O(2n) time due to the second ∑. Using the well-
known technique of variable elimination [6], we can instead
compute (2) by executing the query plan

∑
I

((
∏I∧¬S(b) 4

)(
∏¬I∧¬S(b) 9

))
(

∑
S(a)

(
∏I∧¬S(a) 4

)(
∏¬I∧¬S(a) 9

)(
∏S(a) 0

))
(

∏
x/∈{a,b}

∑
S(x)

(
∏I∧¬S(x) 4

)(
∏¬I∧¬S(x) 9

))
. (3)

In this formula, each ∑ loops only over the 2 possible val-
ues that a single Boolean random variable can take, not the
2n−1 possible values that n− 1 Boolean random variables
can take. Therefore, this query plan runs much faster, yet
distributivity guarantees that the result is the same.

This technique achieves exact inference exponentially
faster than naively enumerating worlds, but there is plenty
of room for improvement: because basic variable elimina-
tion operates over ground propositions only and does not
explicitly represent logic variables such as x, it executes the
last line in this query plan literally by repeating n−2 times
the same computation ∑S(x)

(
∏I∧¬S(x) 4

)(
∏¬I∧¬S(x) 9

)
. In

contrast, lifted variable elimination [20, 4] operates over
first-order propositions and explicitly represents logic vari-
ables such as x, so it executes that computation just once
then raises the result to the (n−2)-th power.

In general, lifted inference gains efficiency by exploiting
the symmetry in a distribution, because a realistic distribu-
tion often combines a uniform model of a large population

with sparse conditions on specific individuals like Alice and
Bob. This idea seems general, yet only specific inference
methods (variable elimination and belief propagation [22])
have had lifted variants devised. It is thus natural to ask, can
an arbitrary inference procedure be lifted automatically?

As a first affirmative answer to this question, we show in
this paper how an inference procedure expressed in terms
of a general loop primitive can be lifted automatically using
normalization by evaluation (NBE) with first-class delim-
ited continuations. We contend that the abstract interpreta-
tion of loops is the key to lifted inference.

The next section describes two parts of the problem –
transforming the loop body into the form of a top-level
switch and taking advantage of this representation in iter-
ating. On a simple example of a single loop we explain how
to automatically convert, or reify, its body from a function
over the loop variable to a switch data structure. Section 3
extends the reification to nested loops, revealing its metacir-
cularity. Section 4 parameterizes reification over the type of
the loop domain. Section 5 handles loops over tuples and
over all subsets of the domain. We then conclude. We have
already reviewed the related work on lifted inference; re-
lated work on NBE is discussed in the text. We have im-
plemented our reification algorithms in OCaml and quote
code fragments in the paper. The complete code is available
online at http://okmij.org/ftp/lift-reduce/.

2. Symbolic execution of MapReduce loops

In this section, we show how to perform lifted infer-
ence using a technique for speeding up MapReduce loops.
Whereas the original work on MapReduce [5] focused on
parallel and distributed computation, we exploit the struc-
ture of a certain class of loop bodies – those that treat most
elements of the domain uniformly. In §2.1, we represent
this class of loop bodies so that MapReduce can take advan-
tage of their structure and achieve extraordinary speed-ups.
In §2.2, we use NBE to generate this efficient representation
automatically from loop bodies written as ordinary OCaml
functions.

We favor clarity over generality in this expository sec-
tion. For simplicity, we assume that loops are not nested
and that they range implicitly over a fixed domain of 100
individuals. Nested loops are described in §3; in §4 the
loop variables are no longer restricted to a fixed type; and
§5 deals with a domain other than that of individuals.

2.1. MapReduce in sublinear time

This section explains how to represent loops so that they
can be evaluated in sublinear time.

Although the example in §1 only uses sum and product
loops, other inference tasks and methods require different

2

aggregate operations. To abstract over the variety of aggre-
gate operations, we require that all loops be expressed in
terms of MapReduce [5]. A MapReduce loop specifies

• the domain to iterate over (for now, simply the set of
all 100 individuals);
• the body, a function that maps individuals to results;
• the reduction operator, a commutative and associative

binary function that combines two results into one; and
• the result when the domain is empty.

The empty result should be the identity of the reduction op-
erator. The last two items specify a commutative monoid;
therefore, we group them in the following data structure:
type ’r monoid = {union : ’r -> ’r -> ’r;

empty : ’r}
For example, addition on integers forms a monoid.
let sum_monoid = {union = (+); empty = 0}

The result of the loop, as computed by MapReduce, is
defined by the following function.
let map_reduce_gen :

’i domain -> ’r monoid -> (’i -> ’r) -> ’r
= fun domain monoid f ->

fold_left
(fun acc x -> monoid.union (f x) acc)

monoid.empty domain
In words, MapReduce maps the loop body f over all in-
dividuals of the domain and reduces the results using
the monoid. A sum loop is a MapReduce loop with
sum_monoid. For example,
map_reduce_gen people sum_monoid

(fun x -> 1 + if x = "alice" then 0 else 1)
We assume a domain people of 100 individuals identi-
fied by distinct names: "alice", "bob", "carol", . . . ,
"äijö". The sum loop above produces the result 199.

Whether or not we evaluate MapReduce loops using par-
allel or distributed computing, we can apply the following
optimization. The body of the sum loop above maps every
one of the 100 individuals to the integer 2, except alice.
Since addition is associative and commutative, we rearrange
the loop to add the result for alice to the sum of 99 copies
of the default result 2, giving us 1+99×2 = 199.

In this example, because the reduction operator is just
addition on integers, we can easily use multiplication to re-
duce multiple copies of the same result. In general, as long
as reduction is associative as we require, we can reduce
m copies of a result r to a single result, notated mr, using
O(logm) reductions [15, §4.6.3]. In particular, the familiar
‘fast power’ algorithm generalizes to an arbitrary monoid:
let rec repeat monoid r = function

| 0 -> monoid.empty
| n when n mod 2 = 0 ->

repeat monoid (monoid.union r r) (n/2)

| n ->
monoid.union r (repeat monoid r (n-1))

Thus, we evaluate the sum loop in sublinear time and avoid
enumerating the majority of the domain. This optimization
is the essence of lifted inference and the core of this paper.

Our goal, thus, is to evaluate MapReduce loops in a way
that automatically discovers if the loop body maps most in-
dividuals in the domain to the same value, and that uses re-
peated reduction to evaluate such a loop in sublinear time.
To achieve this goal, we have to represent the additional
structure of the loop body – that it maps all individuals, ex-
cept for a select few, to a single default value. We introduce
the switch data structure:
type ’r switch

= Default of ’r
| Case of indiv * ’r * ’r switch

type indiv = string
The meaning of a switch (of type ’r switch) is a map-
ping from individuals to results (of type ’r). The switch
represents the mapping essentially as a list of excepted in-
dividuals along with their particular results, terminated with
the default result. (The list of ‘cases’ with the ‘default’ at
the end is reminiscent of the ‘switch’ statement in C.) We
can convert a switch to the mapping it represents:
let rec reflect : ’r switch -> (indiv -> ’r)

= function
| Default r -> fun _ -> r
| Case (x,r,fsw) -> fun x’ ->

if x = x’ then r else reflect fsw x’
Thus, if fsw is the switch Case ("alice",1,
Default 2), then reflect fsw "alice" is 1 whereas
reflect fsw "bob" is 2.

By the way, it is straightforward to add laziness to the
switch data structure, so that results and cases are computed
on demand. We omit this trivial optimization in this paper.

To take advantage of the representation of the loop body
as a switch, we rewrite MapReduce as follows:
let map_reduce_sw monoid fsw =

let rec loop card = function
| Default r -> repeat monoid r card
| Case (_,r,tail) ->

monoid.union r (loop (card-1) tail)
in loop 100 fsw

The type of this function is ’r monoid -> ’r switch
-> ’r. Instead of enumerating every individual in the do-
main as map_reduce_gen does (which takes linear time),
the new code processes the default case using repeated re-
ductions, then adds the particular results one by one. For
simplicity, we assume that the switch never excepts any in-
dividual twice, nor any individual outside the domain; all
switches we produce have this property. Therefore, we only
need to calculate the cardinality of the domain without the

3

excepted individuals. We use the latter number for repeated
reductions. We can evaluate our example sum loop faster:
map_reduce_sw sum_monoid

(Case ("alice",1,Default 2))
Likewise, we speed up the query plan (3): the outermost
product (everything except ∑I) can be specified as 2 special
cases for a,b along with the result for all other individuals.
It is easy to evaluate such a loop in sublinear time, because
the default result can be computed once and reduced repeat-
edly. That would accomplish our goal of lifted inference.

2.2. Reifying a function to a switch

In the rest of this paper, we use NBE to make it conve-
nient to represent loop bodies efficiently as switches. More
specifically, we generate switches from ordinary (and pos-
sibly separately compiled) OCaml functions.

In principle, we can write switches by hand. Our triv-
ial sum loop above already shows the drawback of such
hand coding. To convert the loop body in functional form
fun x -> 1 + if x = "alice" then 0 else 1 to a
switch, we have to manually lift the if statement and re-
peat the increment operation. The algorithm of the loop
body is no longer perspicuous in the resulting switch. In
our introductory example (3), the special cases a and b of
the product loop arise for different reasons – we observe Al-
ice’s health and we care about Bob – perhaps from different
modules in a large AI program. It is a tedious and error-
prone chore to convert this product to a switch by collecting
the special cases manually. This chore becomes unbearable
as we move to nested loops in §3.

A better approach is to design a domain-specific lan-
guage (DSL) for loop bodies, embed it in OCaml, and write
an interpreter that evaluates a DSL expression to a switch. A
DSL can be embedded into OCaml initially and deeply, by
defining a data structure for the DSL’s abstract syntax tree,
or finally and shallowly, by defining a function for each ex-
pression form of the DSL [12, 18, 1]. Embedded in these
two ways, the body of our trivial sum loop would look like
Add (Int 1) (If (Equ (Var "x") (Ind "alice"))

(Int 0) (Int 1))
add (int 1) (if_ (equ (var "x") (ind "alice"))

(int 0) (int 1))
respectively. In this paper, we follow the NBE strategy of
taking [13] the final embedding to its extreme, a very shal-
low embedding in which the DSL extends the host language
OCaml. For example, we write the body of our sum loop as
1 + if equ x (Val "alice") then 0 else 1
using the native OCaml conditional operator and integer lit-
erals. In fact, the loop body can be any OCaml code and use
any compiled OCaml library. We reuse OCaml’s implemen-
tation rather than writing our own interpreter. Another ad-
vantage, perhaps the most important one, is discussed in §3.

We want to turn a loop body from a function to a switch.
If we use the initial or final DSL embedding, we would
write a partial evaluator that takes the loop variable as the
dynamic input and computes a switch as a residual program.
In the very shallow embedding, the loop body is a regular
OCaml function that takes the loop variable as argument.
We use NBE to partially evaluate this function without writ-
ing a full partial evaluator. In particular, since the loop vari-
able ranges over a sum type of individuals, we perform NBE
using first-class delimited continuations [16, 2].

Informally, we apply the function to a distinguished
value of the loop variable. Imagine that this application hap-
pens in a debugger, so that a breakpoint is triggered when
the distinguished value is used, such as compared to a con-
stant. The debugger can report the constant used in the com-
parison and resume from the breakpoint in two ways: either
by assuming that the loop variable is equal to the constant or
by assuming that it is not equal. The resumed function may
trigger another breakpoint by using the distinguished value
again. A transcript of the debugging session is a search tree
of alternative resumptions that describes how the loop body
uses the loop variable and hence reifies [9, 7] the body as
a data structure. If the only operations on the loop variable
are equality comparisons, then the tree is actually a switch.

In the rest of the section, we turn this outline into
code. The outline poses three problems: producing a distin-
guished value for the loop variable; triggering a breakpoint
when this value is used; handling breakpoints from within
the program itself. We solve the first problem by extending
the domain of the loop variable. The body of a loop over
individuals should take an argument of the sum type var:

type var = Val of indiv | Var

A var is either a concrete individual such as Val "alice"
or an abstract individual Var, our distinguished value. (Be-
cause this section deals with unnested loops only, there can
be only one loop variable in scope and we need only one
distinguished value.)

We need to trigger a breakpoint whenever the abstract in-
dividual is used. That is easy with a bit of cooperation from
the programmer of the loop body, who should use custom
operations to deal with the loop variable. (The cooperation
is not required if we can overload the operations on the type
var, for example, with Haskell-like type classes.) For ex-
ample, to compare the loop variable x with alice, the pro-
grammer should write equ x (Val "alice") rather than
x = "alice". The function equ is our custom equality
comparison. It returns a regular OCaml Boolean, ready
for if to test. It is inconvenient to have to use these
custom operations, but the programmer cannot forget to
use them because the type checker would complain about
x = "alice", that "alice" has the type indiv and x has
the different type var. The particular type var for the loop
variable also lets us control how the loop variable may be

4

used and hence what constraints on it may be imposed.
In this paper, we only deal with equality comparisons and
equality constraints, so we provide a single primitive oper-
ation equ on arguments of type var. We are working on
generalizing to inequality or arithmetic constraints.

To debug the body, we use the delimited control oper-
ators shift and reset [3]. The function reset takes a
thunk, runs it, and, if no breakpoint is hit, returns its result.
For example, reset (fun () -> 42) evaluates to 42. To
trigger a breakpoint, we use the function shift: evaluating
shift (fun k -> exp) interrupts the running thunk and
makes the nearest dynamically enclosing reset return the
result of the expression exp . For example, the expression
reset (fun () -> 42 + shift (fun k -> 1 + 2))
evaluates to 3. The argument k is bound to the delimited
continuation, a function that resumes the computation from
the breakpoint. To tell if the thunk hits a breakpoint or fin-
ishes normally, it is common to define a sum data type like
type ’r req

= Done of ’r
| Compare of var * var * (bool -> ’r req)

so that, if reset (fun () -> Done exp) returns the
value Done r, then r is the final result of exp . (The name
req is short for ‘request’.) Using shift, we define our cus-
tom equality predicate equ to trigger a breakpoint:
let equ (x : var) (y : var) : bool =

shift (fun k -> Compare (x,y,k))
Evaluating equ x y makes the nearest dynamically enclos-
ing reset return the value Compare (x,y,k). The first
two components are the arguments passed to equ. The last
component of Compare is a function that can be applied to
a Boolean b to resume from the call to equ with the com-
parison result b. Because the resumed computation may hit
another breakpoint before finishing normally, the type of
this last component recursively refers to ’r req.

We are all set to normalize loop bodies from functions to
switches. We define the function reify:
let reify (f : var -> ’r) : ’r switch =

let var = Var in
let rec loop_known w = function

| Done r -> r
| Compare (Var,Var,k) ->

loop_known w (k true)
| Compare (Var,Val y,k) ->

loop_known w (k (y = w))
| Compare (Val y,Var,k) ->

loop_known w (k (y = w))
| Compare (Val x,Val y,k) ->

loop_known w (k (x = y)) in
let rec loop ws = function

| Done r -> Default r
| Compare (Var,Var,k) ->

loop ws (k true)
| Compare (Var,Val y,k) ->

make_case ws k y
| Compare (Val y,Var,k) ->

make_case ws k y
| Compare (Val x,Val y,k) ->

loop ws (k (x = y))
and make_case ws k y =

if List.mem y ws then loop ws (k false)
else Case (y,loop_known y (k true),

loop (y::ws) (k false))
in loop [] (reset (fun () -> Done (f var)))

As its type indicates, reify takes a function mapping the
loop variable of type var to the result of type ’r, and re-
turns the corresponding switch. Our reification algorithm is
summarized in the last line of the code: we use reset to
debug the application of the loop body to the distinguished
value var of the loop variable. The debugger reports all
attempts to compare two values of type var.

At the heart of reify is the internal function loop of the
type indiv list -> ’r req -> ’r switch. (Let us over-
look the first argument for a moment.) The function is the
‘debugging script’ that interacts with the loop body being
debugged. An occurrence of equ x y in the body asks a
question, whether two values of type var are equal. This
question triggers a breakpoint and makes reset return the
value Compare (x,y,k), which specifies the two values
asked about and the function k for answering the question.
The computation may produce more questions, to be an-
swered in turn, so loop is recursive.

The ‘debugging script’ loop is a straightforward case
analysis. If the debugger returns Done r, then the loop
body is finished without using the loop variable, so we get
the default result r of the body. If the loop body asks to
compare two distinguished values, then we return the an-
swer true: two loop variables must be equal because we
assume that only one is in scope. To compare two con-
crete values Val x and Val y, we simply compare the in-
dividuals x and y. Admittedly, equ has enough information
to handle these two cases on its own without triggering a
breakpoint. We introduce this optimization in §4.

The two remaining cases of loop are the most interest-
ing: they answer a question like equ x (Val "alice"),
comparing the loop variable to a concrete value y. Such a
question gives rise to a special Case of the generated switch.
The Case maps the individual y to a particular result, which
we compute by answer the question with true. To compute
the rest of the switch, we answer the question with false.

We have overlooked so far the first argument to loop. If
the loop body asks the same question twice, we must give
consistent answers. The first argument to loop is the list
of individuals for which loop has already received equality
questions and answered in the negative. This list is a memo

5

table of sorts: when the same question comes again, loop
answers false right away.

The function loop_known is a variant of loop for when
we answer true to an equality comparison between the
loop variable and a concrete individual w. Because equality
is transitive, any further comparison between the loop vari-
able and a concrete individual y can only be answered by
simply comparing y to w. Thus loop_known w computes
the result of the loop body on w. From the point of view of
partial evaluation, loop_known propagates positive infor-
mation resulting from equality comparison whereas loop
propagates negative information [24].

We have achieved both the goal of reifying a MapRe-
duce loop body into a switch data structure and the goal of
making MapReduce take advantage of that structure to run
loops in sublinear time. We finish this section with a com-
plete example. We first define membership testing in a list,
using our custom equ predicate:
let rec member x = function

| [] -> false
| (h::t) -> equ x h || member x t

We can now very quickly evaluate the loop
let xs = [Val "alice"; Val "bob"; Val "alice"]
in map_reduce_sw sum_monoid

(reify (fun x ->
(if member x xs then 0 else 1) *
(if equ x (Val "alice") then 4 else 1) *
(if equ x (Val "carol") then 0 else 1)))

yielding 97. In general, we can speed up the loop
map_reduce_gen people monoid

(fun x -> f (Val x))
by replacing it with map_reduce monoid (reify f).

The rest of the paper generalizes the achieved result re-
moving the simplifying assumptions of unnested loops and
of the fixed, atomic type of the loop domain.

3. Metacircular interpretation for nested loops

In this section, we generalize our MapReduce speed-up
technique to nested loops. This generalization is crucial for
probabilistic inference. It requires and reveals that the NBE
underlying our reification technique is metacircular. In con-
trast, the generalization would be far less straightforward
using the two other methods briefly considered in §2.2 for
embedding a DSL for MapReduce loops.

The assumption that only one loop variable is in scope,
built into reify in §2.2, implies that any two loop variables
are equal to each other. This leads to spectacularly wrong
results for nested loops. For example, the following
map_reduce_sw sum_monoid (reify (fun x ->

map_reduce_sw sum_monoid (reify (fun y ->
if equ x y then 0 else 1))))

evaluates to zero. More disturbing are subtly wrong results
for nested loops even if we never compare two loop vari-
ables together:
map_reduce_sw sum_monoid (reify (fun x ->

map_reduce_sw sum_monoid (reify (fun y ->
if equ x (Val "alice") ||

equ y (Val "bob")
then 0 else 1))))

We expect the expression to yield 99× 99 = 9801 but ob-
tain only 9800. The problem occurs because the inner loop
considers the outer loop variable x to be identical to the in-
ner loop variable y. Such a confusion of variables occurs
when nesting other naive NBE procedures such as naive au-
tomatic differentiation [23].

To tell loop variables apart, we need an infinite supply of
distinguished values of the loop variable. Whenever we are
about to reify a new loop body, we should create a unique
distinguished value for its loop variable. We redefine the
type var as follows:
type var = Val of indiv | Var of unit ref
Since reference cells are generative, the expression ref ()
creates a unique value that is physically equal (in the sense
of (==)) only to itself.

We have yet to deal with a tougher problem: by defini-
tion, loop nesting means that a loop body – an argument to
reify – contains reify itself. We need to debug a debug-
ger. The outer debugger’s breakpoints may appear in the
inner debugger and in the program it debugs. The inner de-
bugger should distinguish its own breakpoints from those
of the outer debugger [8]. In other words, our DSL for
writing loop bodies should be expressive enough to write
the function reify in it – it has to be amenable to self-
interpretation. Writing a self-interpreter in a typed language
is a remarkably difficult problem [21]. The very shallow
encoding saves the day: our DSL is OCaml itself with the
library function equ to compare loop variables. Thus, to
make reify nestable – or, metacircular – we just have to re-
place its calls to (=) by calls to equ whenever we compare
values that may be outer loop variables. Since loop vari-
ables have a distinguished type var, such a replacement is
easy, being type-driven. Below is the new code for reify.
(We elide loop_known, which is a mere variation of loop.)
let reify (f : var -> ’r) : ’r switch =

let var = Var (ref ()) in
let rec loop_known w = function ... in
let rec loop ws = function

| Done r -> Default r
| Compare (x,y,k) when x == var &&

y == var ->
loop ws (k true)

| Compare (x,y,k) when x == var ->
make_case ws k y

| Compare (y,x,k) when x == var ->

6

make_case ws k y
| Compare (x,y,k) ->

loop ws (k (equ x y))
and make_case ws k y =

if member y ws then loop ws (k false)
else Case (y,loop_known y (k true),

loop (y::ws) (k false))
in loop [] (reset (fun () -> Done (f var)))

The type of the first argument to loop changed from
indiv list to var list, so we use the function member
defined at the end of §2.2 to test membership. Instead of
assuming that any Var is our loop variable, we check if
something is our loop variable by comparing it physically
against the var we created. This way, we treat any vari-
ables of outer loops as concrete individuals. In particular, a
special Case in the generated switch may contain an outer
loop variable as its first component y. Therefore, we need
to redefine the switch data type, so that the first component
of Case is of the type var:
type ’r switch

= Default of ’r
| Case of var * ’r * ’r switch

This reify delegates the questions that do not concern its
own loop variable to some parent reify. So, we need an
outermost ‘debugging script’ to answer questions about ac-
tually concrete individuals:
let top thunk =

let rec loop = function
| Done r -> r
| Compare (x,y,k) -> loop (k (x = y))

in loop (reset (fun () -> Done (thunk ())))
All our MapReduce computations must be within a thunk
executed by top.

We finish the section with a complete example of eval-
uating a nested loop. We count the ordered pairs (x,y) of
individuals such that x 6= alice, y 6= bob, and x 6= y.
top (fun () ->
map_reduce_sw sum_monoid (reify (fun x ->

map_reduce_sw sum_monoid (reify (fun y ->
if equ x (Val "alice") ||

equ y (Val "bob") || equ x y
then 0 else 1)))))

This expression evaluates to the desired result 9703. We
can glean how this counting works by removing the outer
map_reduce_sw sum_monoid so to compute the result of
reifying the outer loop:
Case (Val "alice", 0,

Case (Val "bob", 99, Default 98))
Our loop bodies never directly compare x to bob, yet the
outer reify correctly makes a special case for when x is
bob! This special case arises from the use of member by
the inner reify to decide whether y 6= bob entails x 6= y.

Multiple layers of interpreters thus combine to process the
constraints and count their satisfying assignments, without
converting them globally to a normal form [14].

4. Polymorphism and optimization

We have so far assumed that all loop variables range over
the same type of individuals. In this section, we remove
this limitation, so that loop variables may have any type
’i var, parameterized over the type ’i of the domain to it-
erate over. The equ predicate becomes a polymorphic func-
tion over ’i, and reify now handles functions from any
loop domain. This generalization turns out an optimization.

We start by describing an inefficiency of the nested loop
reification in §3. The comparison equ x (Val "alice")
of the loop variable x triggers a breakpoint handled by the
nearest dynamically enclosing reify. If x turns out not to
be the innermost loop variable, then this reify re-executes
equ x (Val "alice") to trigger a breakpoint handled by
an outer reify, which goes through the same moves. Thus,
it may take many delegating steps to answer a comparison
with an outer variable that occurs in an inner body. One
may wish to instead send the question straight to the reify
in charge of that variable (or, if two variables are compared,
to the reify in charge of the inner of the two variables).
For this purpose, a shift expression enclosed by several
resets needs to designate at run time a particular reset
for which to trigger a breakpoint. Multi-prompt delimited
continuations [11] give us exactly this ability. We can cre-
ate arbitrarily many prompts to pass to reset and shift
as an additional argument. The function shift delivers the
breakpoint to the nearest reset with the same prompt, by-
passing any intervening resets with other prompts.

For equ to specify which reify to deliver the break-
point to, we create a new prompt each time reify is called
and store the prompt in the distinguished value for the cor-
responding loop variable. To compare two loop variables
to see which one has inner scope, we also store in the dis-
tinguished value a generation counter that is incremented
every time reify is called. Below are the new definitions
of the types var, req, and switch.
type ’i var

= Val of ’i
| Var of generation * ’i req prompt

and ’i req = Compare of ’i var * (bool -> ’i req)
type generation = int
type (’i,’r) switch

= Default of ’r
| Case of ’i var * ’r * (’i,’r) switch

It turns out that sending each question straight to the prompt
in charge relieves all calls to reify from having to handle
questions of the same type, so we can and do parameterize
the types var, req, and switch by the type ’i of the loop

7

domain. Also, a Compare question only has two compo-
nents now because it no longer needs to include the name
of the inner variable to compare against.

We turn to the new equ. It used to be a one-liner, but now
it has to determine to which reify to direct the comparison
question and so has to analyze its arguments.
let equ (x : ’i var) (y : ’i var) : bool =

match (x,y) with
| (Var (gx,px), Var (gy,py)) ->

if gx > gy then
shift px (fun k -> Compare (y,k))

else if gx < gy then
shift py (fun k -> Compare (x,k))

else true
| (Val x, Val y) -> x = y
| (Var (_,px), y) | (y, Var (_,px)) ->

shift px (fun k -> Compare (y,k))
To compare a loop variable with a constant (the last line of
the code), equ extracts the prompt px from the variable and
passes it to shift to direct the question. To compare two
loop variables, equ compares the counters gx and gy to de-
cide which one is inner. Finally, to compare two concrete
values, equ has no prompt to send the question to and per-
forms the comparison itself using (=). We gain a welcome
optimization: equ now compares two concrete values with-
out triggering any breakpoint, and we no longer need top.

The types of reify and reflect are now as follows.
reify : (’i var -> ’r) -> (’i,’r) switch
reflect : (’i,’r) switch -> (’i var -> ’r)
Their complete code is available online. The final example
of §3 runs as before (without the obsolete call to top).

5. Looping over a powerset domain

As illustrated in §1, probabilistic inference often calls for
looping (especially summing) over Boolean assignments to
Ω(n) random variables at once. In the opening example, we
used distributivity in variable elimination to avoid looping
over the exponentially many assignments. However, this
strategy is not available when the individuals in the domain
interact more tightly. For example, suppose our distribution
comprises factors that involve two individuals at once, such
as ‘2 if I∧S(x)∧S(y)’, for each x and y such that x 6= y. We
want to find the probability that Bob is sick, which has the
form

∑
I

∑
S(z)

for each z 6= b

(
∏I∧S(x)∧S(y) 2

)
· · · . (4)

Unlike in (2) and (3), distributivity cannot turn the sum
of products into a product of sums, because the product
∏I∧S(x)∧S(y) 2 is a loop over pairs of individuals.

In general, many probabilistic models postulate local
(especially pairwise) interactions among a large popula-

tion of individuals. To evaluate such models, we need to
loop over all subsets of the domain and – inside that loop’s
body – loop over tuples of individuals in the subset. If we
only wanted to loop over tuples of individuals in the en-
tire domain, then nested loops do the job nicely. We have
already seen an example: the code at the end of §3 loops
over ordered pairs (x,y) and distinguishes the special cases
where x = alice, y = bob, or x = y. Adding an outer loop
over subsets of the domain makes the computation much
harder to perform tractably. The problem is reminiscent of
NBE with higher-order functions and sum types. Counting
arguments have been used formally to deal with some cases
of the problem [4, 17].

Our approach is to convert a loop over tuples into a loop
over individuals. That is, we provide a construction that
turns every loop over tuples into an unnested loop over in-
dividuals, such that the result of the original loop can be
read off easily from the result of the new loop. We detail
this construction in §5.1, then show in §5.2 how to use it to
answer queries like (4).

5.1. From loops over tuples to loops over individuals

We first illustrate our construction using the loop over
pairs in §3. That loop counts the pairs (x,y) such that x 6=
alice, y 6= bob, and x 6= y. Our goal is to express the same
count using an unnested loop.

If we assume x 6= y, then we can express the body of this
loop over tuples as a meta-switch, a switch on x – of type
int switch switch – whose results are switches on y:
Case (Val "alice", Default 0,
Case (Val "bob" , Default 1,
Default (Case (Val "bob", 0, Default 1))))
The second Case makes sense because if x is Bob then our
assumption that x 6= y guarantees the final result to be 1.

This meta-switch contains 3 switches. Consequently, our
new loop, when applied over a set S of individuals, results
in a record (r;m1,m2,m3;r1,r2,r3) with 7 components:

• The first component r is the result we want – that of
applying the original loop over S× S. In particular,
when S is empty, r is just 0, the empty result of the
original loop. Also, when S is a singleton set {x}, r is
just 0, the result of the original loop over {(x,x)}.
• The next 3 components m1,m2,m3 are natural num-

bers that count how many elements of S are sent by
the meta-switch to each of the 3 switches. That is,
m1 counts how many elements of S are alice (either
0 or 1), m2 counts how many are bob (again either 0
or 1), and m3 counts how many are neither.
• The last 3 components r1,r2,r3 are the results of ap-

plying the 3 switches as loops over S. In this example,
r1 is always 0, r2 is the cardinality of S, and r3 is the
number of elements of S that are not bob.

8

Thus, the empty result of the new loop is (0;0,0,0;0,0,0).
The new reduction operator is more interesting: given the
results (r;m1,m2,m3;r1,r2,r3) and (r′;m′1,m

′
2,m

′
3;r′1,r

′
2,r
′
3)

for two sets S and S′, it computes the combined result

(r + r′+m1r′1 +m2r′2 +m3r′3 +m′1r1 +m′2r2 +m′3r3;
m1 +m′1,m2 +m′2,m3 +m′3;r1 + r′1,r2 + r′2,r3 + r′3) (5)

for the disjoint union of S and S′. In the first component of
this result, r is the result of the original loop over S×S, r′ is
the result over S′×S′, m1r′1 +m2r′2 +m3r′3 is the result over
S×S′, and m′1r1 +m′2r2 +m′3r3 is the result over S′×S.

Following this description, the body of the new loop
maps alice to (0;1,0,0;0,1,1), bob to (0;0,1,0;0,1,0),
and all other individuals to (0;0,0,1;0,1,1). Applying the
loop over a domain of 100 individuals, including alice and
bob, gives the result (9703;1,1,98;0,100,99), whose first
component 9703 is the result of the original loop, as desired.

We now turn to the general construction. We focus on
looping over pairs, but the idea generalizes to tuples.

To begin, we reify the original loop body, which operates
on a tuple, into a meta-switch. We do so using the reify
function we already implemented, but with a twist: to gen-
erate the inner switches under the assumption that the com-
ponents of the tuple are distinct, we generalize reify to a
new function reify_without, which can be called with an
argument list ws of individuals that the loop does not range
over. The implementation of reify_without is just like
reify, except the empty list [] on the last line is replaced
by the new argument ws. If f is a loop body over pairs, a
binary function of type var -> var -> ’r, then the fol-
lowing expression computes the meta-switch.
reify (fun x -> reify_without [x] (f x))
If the meta-switch contains k switches, then the new loop,
when applied over a set S of individuals, results in a record
(r;m1, . . . ,mk;r1, . . . ,rk) with 1+2k components:

• The first component r is the result we actually want –
that of applying the original loop over S×S.
• The next k components m1, . . . ,mk are natural num-

bers that count how many elements of S are sent by
the meta-switch to each of the k switches.
• The last k components r1, . . . ,rk are the result of apply-

ing the k switches as loops over S.

Thus, if r0 is the empty result of the original loop, then the
empty result of the new loop is (r0;0, . . . ,0;r0, . . . ,r0). The
reduction operator combines (r;m1, . . . ,mk;r1, . . . ,rk) and
(r′;m′1, . . .

′ ,m′k;r′1, . . .
′ ,r′k) to form the result

(r⊕ r′⊕m1r′1⊕m2r′2⊕m3r′3⊕m′1r1⊕m′2r2⊕m′3r3;
m1 +m′1,m2 +m′2,m3 +m′3;r1⊕ r′1,r2⊕ r′2,r3⊕ r′3). (6)

Here⊕ denotes the original reduction operator and juxtapo-
sition denotes repeated reduction.

Following the description above, it is easy to implement
a pair of functions pairs and read_off with the signature
type ’r pairs = ’r * (int * ’r) list
val pairs : ’r monoid * (var -> var -> ’r)

-> ’r pairs monoid * (var -> ’r pairs)
val read_off : ’r pairs -> ’r
satisfying the basic law:

map_reduce_gen dom monoid (fun x ->
map_reduce_gen dom monoid (f x))

= let (monoid’,f’) = pairs (monoid,f) in
read_off (map_reduce_gen dom monoid’ f’)

5.2. From loops over individuals to loops over sets

By itself, the pairs construction only gives us a new
way besides nested loops to loop over pairs of individuals
in the entire domain. To loop over subsets of the domain,
as demanded by the queries (2) and (4), we need to use dis-
tributivity as in §1. However, it is less obvious how to use
distributivity to answer (4) than to answer (2), because the
results produced by the new loop are no longer just numbers
that can be added. Our final hurdle is to combine the new
loop’s results over different subsets of the domain.

Algebraically speaking, the query plan (3) uses distribu-
tivity in the commutative semiring of probabilities. To an-
swer the more complex query (4), we need distributivity in a
commutative semiring whose multiplication is the reduction
operation produced by pairs. Because this multiplication
is not just that on numbers, the corresponding addition can-
not just be that on numbers. Instead, we extend a multiplica-
tive monoid freely to a semiring, by taking formal sums of
elements of the multiplicative monoid. In other words, we
put multiple results produced by the new loop into a bag.

In our implementation, we represent a bag as a finite map
from elements to natural numbers. For efficiency, we must
detect duplicate elements and represent them by counting.
type ’r bag = (’r, int) PMap.t
Bags form a monad, that of nondeterminism.
val unit : ’r -> ’r bag
val bind : ’r bag -> (’r -> ’s bag) -> ’s bag
Equipped with the union operation, bags also form a com-
mutative monoid – the additive monoid of the semiring.
val bag_add : ’r bag monoid
Furthermore, we can loop over the contents of a bag; in
other words, we can homomorphically map a bag monoid to
another monoid. This operation is efficient, using repeated
reduction in the target monoid.
val reduce_bag : ’r monoid -> ’r bag -> ’r
Finally, any monoid structure on the bags’ elements (such as
produced by pairs) gives rise to another monoid structure
on the bags – the multiplicative monoid of the semiring.
val bag_mul : ’r monoid -> ’r bag monoid

9

To demonstrate the use of these algebraic structures, we
return to the example in §5.1. Provided that int is the type
of arbitrary-precision integers, the following code computes
the sum

∑S ∏x,y∈S, x 6=alice, y6=bob, x 6=y 3, (7)

where S ranges over all subsets of the domain.
let f x y = if equ x (Val "alice") ||

equ y (Val "bob") || equ x y
then 0 else 1 in

let (m’,f’) = pairs (sum_monoid, f) in
let m’’ = bag_mul m’ in
reduce_bag sum_monoid
(bind

(map_reduce_sw m’’ (reify (fun x ->
bag_add.union m’’.empty (unit (f’ x)))))

(fun r -> unit (power 3 (read_off r))))

6. Conclusions

We have applied NBE to make MapReduce loops run in
sublinear time in case the loop bodies process most of the
domain elements uniformly. NBE with first-class delim-
ited continuations automatically reifies a loop body into a
switch data structure, exposing the uniformity of iteration.
Our technique applies to nested loops and to loops over tu-
ples and over all subsets of the domain.

Our use of first-class delimited continuations to simu-
late symbolic execution with backtracking has the advan-
tage that reify incurs no interpretive overhead. That is,
any code that does not compare individuals runs just as fast
inside reify as outside. This lack of a slowdown is es-
pecially helpful for probabilistic inference, which often in-
volves heavy numerical computations.

Currently our technique only applies to loop bodies
whose sole operation on loop variables is testing their equal-
ity with constants and each other. Many classes of proba-
bilistic inference have loops of that form. We are working
on other loop-variable constraints, such as numeric inequal-
ities and ranges.

Acknowledgments We thank Rodrigo de Salvo Braz for
posing the problem of lifted inference to us, and Dylan
Thurston for discussing loops over a powerset domain.

References

[1] J. Carette, O. Kiselyov, and C.-c. Shan. Finally tagless,
partially evaluated: Tagless staged interpreters for simpler
typed languages. Journal of Functional Programming, in
press.

[2] O. Danvy. Type-directed partial evaluation. In POPL, pages
242–257, 1996.

[3] O. Danvy and A. Filinski. A functional abstraction of typed
contexts. Technical Report 89/12, DIKU, University of Co-
penhagen, 1989.

[4] R. de Salvo Braz, E. Amir, and D. Roth. Lifted first-order
probabilistic inference. In Getoor and Taskar [10], pages
433–451.

[5] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In OSDI, pages 137–150, 2004.

[6] R. Dechter. Bucket elimination: A unifying framework for
probabilistic inference. In M. I. Jordan, editor, Learning in
Graphical Models. MIT Press, Cambridge, 1999.

[7] A. Filinski. Representing monads. In POPL, pages 446–
457, 1994.

[8] A. Filinski. Representing layered monads. In POPL, pages
175–188, New York, 1999. ACM Press.

[9] D. P. Friedman and M. Wand. Reification: Reflection with-
out metaphysics. In Lisp and Functional Programming,
pages 348–355, 1984.

[10] L. Getoor and B. Taskar, editors. Introduction to Statistical
Relational Learning. MIT Press, Cambridge, 2007.

[11] C. A. Gunter, D. Rémy, and J. G. Riecke. A generalization
of exceptions and control in ML-like languages. In FPCA,
pages 12–23, 1995.

[12] P. Hudak. Building domain-specific embedded languages.
ACM Computing Surveys, 28(4es):196, Dec. 1996.

[13] O. Kiselyov and C.-c. Shan. Embedded probabilistic pro-
gramming. In DSL Working Conference, pages 360–384,
2009.

[14] J. Kisyński and D. Poole. Constraint processing in lifted
probabilistic inference. In UAI, 2009.

[15] D. E. Knuth. The Art of Computer Programming, Volume 2:
Seminumerical Algorithms. Addison-Wesley, third edition,
1997.

[16] J. L. Lawall and O. Danvy. Continuation-based partial evalu-
ation. In Lisp and Functional Programming, pages 227–238,
1994.

[17] B. Milch, L. S. Zettlemoyer, K. Kersting, M. Haimes, and
L. P. Kaelbling. Lifted probabilistic inference with counting
formulas. In AAAI, pages 1062–1068, 2008.

[18] T. Æ. Mogensen. Self-applicable online partial evaluation
of the pure lambda calculus. In PEPM, pages 39–44, 1995.

[19] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Morgan Kaufmann, 1988.

[20] D. Poole. First-order probabilistic inference. In IJCAI, pages
985–991, 2003.

[21] T. Rendel, K. Ostermann, and C. Hofer. Typed self-
representation. In PLDI, 2009.

[22] P. Singla and P. Domingos. Lifted first-order belief propaga-
tion. In AAAI, pages 1094–1099, 2008.

[23] J. M. Siskind and B. A. Pearlmutter. Perturbation confusion
and referential transparency: Correct functional implemen-
tation of forward-mode AD. In Draft Proceedings of the
17th International Workshop on Implementation and Appli-
cation of Functional Languages, 2005.

[24] M. H. B. Sørensen, R. Glück, and N. D. Jones. Towards
unifying deforestation, supercompilation, partial evaluation,
and generalized partial computation. In ESOP, pages 485–
500, 1994.

10

