EQUATIONAL REASONING FOR PROBABILISTIC PROGRAMMING

CHUNG-CHIEH SHAN, INDIANA UNIVERSITY

1. The fields

	Programming	Probability
Theoretical	Induction	Integral
Practical	Interpreter	Inference

2. The tasks

Whenever we're unsure about something, represent our uncertain knowledge as a distribution.

2.1. **The table game.** (Eddy 2004)

casino : M Bool
casino
$$\stackrel{\triangle}{=}$$
 do $\{p \leftarrow \text{uniform } 0 \text{ 1};$
 $a_1 \leftarrow \text{binomial } 8 \text{ } p;$
 $() \leftarrow \text{guard } (a_1 = 5);$
 $a_2 \leftarrow \text{binomial } 3 \text{ } p;$
return $(a_2 \ge 1)\}$

1

Date: January 8, 2018.

2.2. **Inferring behavior from text-message data.** (Davidson-Pilon 2016)

```
texting: \mathbb{M}(\overline{\mathbb{R}}_{+} \times \overline{\mathbb{R}}_{+})

texting \stackrel{\triangle}{=} do \{r_{1} \leftarrow \text{exponential } 37;

r_{2} \leftarrow \text{exponential } 42;

t_{0} \leftarrow \text{counting } 1 70;

\vec{c} \leftarrow \text{mapM}(\lambda t. \text{poisson (if } t < t_{0} \text{ then } r_{1} \text{ else } r_{2}))

[1...70];

() \leftarrow \text{guard } (\vec{c} = [13, 24, ..]);

return (r_{1}, r_{2})\}
```

2.3. Observing a noisy draw from a normal distribution.

```
helloWrong : \mathbb{R} \to \mathbb{M} \mathbb{R}
helloWrong y_0 \stackrel{\triangle}{=} do \{x \leftarrow \text{normal } 0 1;
                                      v \sim \text{normal } x 1;
                                      () \leftarrow guard (y = y_0); -- WRONG!
                                      z \sim \text{normal } x 1;
                                      return z}
                         : \mathbb{R} \to \mathbb{M} \mathbb{R}
helloRight
helloRight y_0 \stackrel{\triangle}{=} \text{do } \{x \leftarrow \text{normal } 0 \text{ 1};
                                     () \leftarrow factor \frac{e^{-(y_0-x)^2/2}}{\sqrt{2 \cdot \pi}};
                                      z \sim \text{normal } x 1:
                                      return z.}
                           : \mathbb{M}(\mathbb{R} \times \mathbb{R})
helloJoint
                          \stackrel{\triangle}{=} do \{x \sim \text{normal } 0 1;
helloJoint
                                      y \sim \text{normal } x 1;
                                      z \sim \text{normal } x 1;
                                      return (y, z) -- Ready to disintegrate
```

3. The equations

3.1. Nondeterminism and weights.

binomial
$$2p = (p \odot p \odot \text{return } 2) \oplus (1)$$

$$(p \odot (1-p) \odot \text{return } 1) \oplus ((1-p) \odot p \odot \text{return } 1) \oplus ((1-p) \odot (1-p) \odot \text{return } 0)$$

$$= (p^2 \odot \text{return } 2) \oplus (2p(1-p) \odot \text{return } 1) \oplus ((1-p)^2 \odot \text{return } 0)$$
(2)

3.2. From rejection sampling to importance sampling. (MacKay 1998)

casino = do {
$$p \leftarrow \text{uniform } 0 \text{ 1};$$
 (3)
 $a_1 \leftarrow \text{binomial } 8 p;$
() $\leftarrow \text{guard } (a_1 = 5);$
((1 - (1 - p)³) $\odot \text{ return True}) \oplus$
((1 - p)³ $\odot \text{ return False}$)}
= do { $p \leftarrow \text{uniform } 0 \text{ 1};$ (4)
() $\leftarrow \text{ factor } (56 \cdot p^5 \cdot (1 - p)^3);$
((1 - (1 - p)³) $\odot \text{ return True}) \oplus$
((1 - p)³ $\odot \text{ return False}$)}

In general, if m = r = 0 n, then we say that the function r is a density or Radon-Nikodym derivative of m with respect to n. If we know how to sample n, then r tells us how to importance-sample m using the proposal distribution n.

3.3. **Density facts.** If r is a density of m with respect to n, then $r \circ f^{-1}$ is a density of fmap f m with respect to fmap f n whenever f is invertible.

If r is a density of m with respect to n, then $recip \circ r$ is a density of n with respect to m. Here recip is the reciprocal function

 λx . 1/x, and a side condition is that the reciprocal must be defined almost everywhere:

do
$$\{x \sim n; \text{ guard } \neg (0 < r \ x < \infty)\} = \text{fail}$$
 (5)

3.4. Conjugate prior and density recognition.

casino =
$$(1/9) \odot$$
 do $\{p \leftarrow \text{beta 6 4};$ (6)
 $((1 - (1 - p)^3) \odot \text{ return True}) \oplus$
 $((1 - p)^3 \odot \text{ return False})\}$

helloRight
$$y_0 = \frac{e^{-y_0^2/4}}{\sqrt{4 \cdot \pi}} \odot \text{do } \{x \leftarrow \text{normal } (y_0/2) (1/\sqrt{2}); (7) \\ z \leftarrow \text{normal } x \text{ 1}; \\ \text{return } z\}$$

3.5. Variable elimination and integration.

casino =
$$(1/9) \odot (((10/11) \odot \text{ return True}) \oplus ((1/11) \odot \text{ return False}))$$
 (8)

helloRight
$$y_0 = \frac{e^{-y_0^2/4}}{\sqrt{4 \cdot \pi}} \odot \text{normal } (y_0/2) \sqrt{3/2}$$
 (9)

3.6. From density to disintegration. (Shan and Ramsey 2017)

$$helloJoint = lebesgue (-\infty) \infty \Leftrightarrow helloRight$$
 (10)

Generalize helloRight to a Kalman filter, such as a function

$$f: \mathsf{State} \to \mathbb{R} \to \mathsf{State}$$

(where State = $\mathbb{R}_+ \times \mathbb{R} \times \mathbb{R}_+$) satisfying

interpret
$$(f \ wcd \ y_0) = \text{do } \{x \leftarrow \text{interpret } wcd;$$
 (11)
$$\frac{e^{-(y_0 - x)^2/2}}{\sqrt{2 \cdot \pi}} \odot \text{normal } x \text{ 1}\}$$

(where interpret $(w, c, d) = w \odot \text{normal } c d$).

3.7. **Markov chain Monte Carlo.** (MacKay 1998; Tierney 1998; McElreath 2017)

Suppose we want samples from a given target distribution

$$p: \mathbb{M} \alpha$$

but it is inefficient or weighted as a sampler. To use Markov chain Monte Carlo, we seek a *transition kernel*

$$k: \alpha \to \mathbb{M} \alpha$$

and iterate it to perform a random walk in the state space α . Our k should return a probability measure that is efficient and unweighted as a sampler. Moreover, it should satisfy *detailed balance*:

$$p \otimes = k = k = \otimes p \tag{12}$$

(Intuition: if $p \otimes = k = k \Rightarrow p$ then $p \gg = k = p$.)

Metropolis-Hastings is a way to construct k from a *proposal* distribution

$$q: \alpha \to \mathbb{M} \alpha$$
.

Like the k we want, the q we provide should return a probability measure that is efficient and unweighted as a sampler, but q need not satisfy detailed balance (in other words, it is fine if $p \ll q \neq q \gg p$).

To use Metropolis-Hastings given q, first find a density r of $p \otimes = q$ with respect to $q = \otimes p$. That is, find

$$r: (\alpha \times \alpha) \to \overline{\mathbb{R}}_+$$

such that

$$p \otimes = q = r = 0 \ (q = \otimes p). \tag{13}$$

Then let

$$\alpha(x, y) = \min\{1, r(x, y)\}\tag{14}$$

$$k \text{ old} = \text{do } \{\text{new} \sim q \text{ old};$$
 (15)

$$\text{accept} \sim \text{bernoulli } (\alpha(\text{new}, \text{old}));$$

$$\text{return (if accept then new else old)} \}$$

- 4. The interpretations: What are we equating?
- 4.1. **Denotational semantics.** (Culpepper and Cobb 2017; Staton 2017; Heunen et al. 2017; Ścibior et al. 2018)

Good for declaring what we want to compute. Equality is a congruence.

Measures are equivalent to integrators. Easy to understand as continuation-passing style.

- 4.2. **Operational semantics: samplers.** Good for implementing algorithms. But what kind of samplers?
- 4.2.1. Randomized samplers ("Monte Carlo methods") vs deterministic code.
 - Randomized samplers, such as Eddy's (2004) samplers.
 - Deterministic code, such as Eddy's (2004) exact formula.
- 4.2.2. Weighted vs unweighted results.
 - Weighted results, as from importance sampling, are superposed over time.

Example use: histograms and other forms of expectation estimation.

• Unweighted results, as from rejection sampling, are used committally.

Example use: deciding how to drive or where to visit next in a graph.

- Converting unweighted result stream to weighted is trivial.
- Converting weighted result stream to unweighted requires bound on weight.
- 4.2.3. *Efficient vs inefficient algorithms.*
 - Sure we want samples fast, but slower samples can be more accurate.

5. The Language

```
: \alpha \to \mathbb{M} \alpha
return
\gg = (>>=) : \mathbb{M} \alpha \to (\alpha \to \mathbb{M} \beta) \to \mathbb{M} \beta
                                                                                                                  = do \{x \sim m; y \sim k x; \text{ return } y\}
                                                                                                m \gg = k
                                                                                                m \gg n \stackrel{\triangle}{=} do { \sim m: v \sim n: return v}
      (>>) : \mathbb{M} \alpha \to \mathbb{M} \beta \to \mathbb{M} \beta
                                                                                                k \Longrightarrow n \stackrel{\triangle}{=} do \{v \nsim n: \nsim k \ v: \text{ return } v\}
\implies (=>>): (\beta \to \mathbb{M} \alpha) \to \mathbb{M} \beta \to \mathbb{M} \beta
\otimes = (\ll) : \mathbb{M} \alpha \to (\alpha \to \mathbb{M} \beta) \to \mathbb{M} (\alpha \times \beta)
                                                                                                                          \stackrel{\triangle}{=} do \{x \nsim m; y \nsim k x; \text{ return } (x, y)\}
                                                                                                m \bowtie = k
                                                                                                                          \stackrel{\triangle}{=} do \{x \sim m; y \sim n; \text{ return } (x, y)\} = do \{y \sim n; x \sim m; \text{ return } (x, y)\}
       (<>) : \mathbb{M} \alpha \to \mathbb{M} \beta \to \mathbb{M} (\alpha \times \beta)
                                                                                                m \otimes n
                                                                                                                          \stackrel{\triangle}{=} do \{v \leftarrow n : x \leftarrow k \ v : \text{return} (x, y)\}
= \otimes (= <>) : (\beta \to \mathbb{M} \alpha) \to \mathbb{M} \beta \to \mathbb{M} (\alpha \times \beta)
                                                                                                k \Rightarrow n
                                                                                                fmap f m \stackrel{\triangle}{=} m \gg = (\text{return } \circ f)
                    : (\alpha \to \beta) \to \mathbb{M} \alpha \to \mathbb{M} \beta
          (\langle + \rangle) : \mathbb{M} \alpha \to \mathbb{M} \alpha \to \mathbb{M} \alpha
                      \cdot \mathbb{M} \alpha
fail
                                                                                                                          \stackrel{\triangle}{=} if b then return () else fail
guard
                    : Bool \rightarrow M Unit
                                                                                                 guard b
                   : \overline{\mathbb{R}}_{\perp} \to \mathbb{M} \text{ Unit}
factor
      (*>) : \overline{\mathbb{R}}_+ \to \mathbb{M} \beta \to \mathbb{M} \beta
                                                                                                                     \stackrel{\triangle}{=} factor p \gg n
                                                                                                p \odot n
= \odot (= *>) : (\beta \to \overline{\mathbb{R}}_+) \to \mathbb{M} \beta \to \mathbb{M} \beta
                                                                                                                  \stackrel{\triangle}{=} (factor \circ r) \Longrightarrow n
                                                                                                r = 0
                                                                                                 bernoulli p = (p \odot \text{ return } 1) \oplus ((1-p) \odot \text{ return } 0)
bernoulli : [0,1] \rightarrow MN
binomial : \mathbb{N} \to [0, 1] \to \mathbb{M} \mathbb{N}
                                                                                                 binomial i p = \text{fmap sum (replicateM } i \text{ (bernoulli } p))
counting : \overline{\mathbb{N}} \to \overline{\mathbb{N}} \to \mathbb{M} \mathbb{N}
geometric : [0,1] \rightarrow M \mathbb{N}
                                                                                                 geometric p = (\lambda i. (1-p) \cdot p^i) = 0 counting 0 \infty
poisson : \mathbb{R}_+ \to \mathbb{M} \mathbb{N}
                                                                                                 poisson r : (\lambda i. r^i/e^r/i!) = 0 counting 0 \infty
lebesgue : \overline{\mathbb{R}} \to \overline{\mathbb{R}} \to \mathbb{M} \mathbb{R}
                                                                                                 uniform x y = (1/(y - x)) \odot \text{ lebesgue } x y
uniform : \mathbb{R} \to \mathbb{R} \to \mathbb{M} \mathbb{R}
                                                                                                                          = (\lambda p. p^{a-1} \cdot (1-p)^{b-1}/B(a,b)) = 0 lebesgue 0 1
                     : \mathbb{R}_+ \to \mathbb{R}_+ \to \mathbb{M} [0, 1]
                                                                                                 beta a b
beta
                                                                                                 exponential l = \text{do } \{x \leftarrow \text{lebesgue } 0 \infty; e^{-x} \odot \text{ return } (l \cdot x)\}
exponential: \mathbb{R}_+ \to \mathbb{M} \mathbb{R}_+
                                                                                                 normal c d = \text{do } \{x \leftarrow \text{lebesgue } (-\infty) \infty; (e^{-x^2/2}/\sqrt{2 \cdot \pi}) \odot \text{ return } (c + d \cdot x) \}
normal : \mathbb{R} \to \mathbb{R}_+ \to \mathbb{M} \mathbb{R}
```

6. The laws

6.1. \gg and return form a commutative monad.

$$return x \gg = k = k x \tag{16}$$

$$m \gg = \text{return} = m$$
 (17)

$$(m \gg = k) \gg = l = m \gg = \lambda x. (k \ x \gg = l)$$
 (18)

$$do \{x \sim m; y \sim n; k \times y\} = do \{y \sim n; x \sim m; k \times y\}$$
 (19)

(Generalize ⊗= to countable products?)

6.2. \oplus and fail form a commutative monoid.

$$fail \oplus m = m \tag{20}$$

$$= m \oplus \text{fail}$$
 (21)

$$(m \oplus n) \oplus o = m \oplus (n \oplus o) \tag{22}$$

$$m \oplus n = n \oplus m \tag{23}$$

(Generalize \oplus to countable sums?)

6.3. \oplus and fail distribute over \gg =.

$$(m \oplus n) \gg = k = (m \gg = k) \oplus (n \gg = k) \tag{24}$$

$$m \gg = \lambda x. (k \ x \oplus l \ x) = (m \gg = k) \oplus (m \gg = l)$$
 (25)

$$fail \gg = k = fail$$
 (26)

$$m \gg \text{fail} = \text{fail}$$
 (27)

6.4. factor is an isomorphism between $\overline{\mathbb{R}}_+$ and \mathbb{M} Unit.

factor
$$p \gg \text{factor } q = \text{factor } (p \cdot q)$$
 (28)

factor
$$p \oplus$$
 factor $q =$ factor $(p + q)$ (29)

$$return() = factor 1$$
 (30)

$$fail = factor 0$$
 (31)

(Treat $\overline{\mathbb{R}}_+$ as synonym for M Unit?)

6.5. **Conjugate priors.** (derived by algebra)

$$\left(\lambda p. \, p^{a'} \cdot (1-p)^{b'}\right) = 0 \text{ beta } a \, b \qquad = \qquad \frac{\mathrm{B}(a+a',b+b')}{\mathrm{B}(a,b)} \odot \text{ beta } (a+a') \, (b+b') \tag{32}$$

$$\left(\lambda x. \frac{e^{-(x-c')^2/d'^2/2}}{\sqrt{2 \cdot \pi} \cdot d'}\right) = 0 \text{ normal } c d = \frac{e^{-(c-c')^2/(d^2+d'^2)/2}}{\sqrt{2 \cdot \pi} \cdot (d^2+d'^2)} \odot \text{ normal } \frac{c \cdot d^{-2} + c' \cdot d'^{-2}}{d^{-2} + d'^{-2}} \frac{1}{\sqrt{d^{-2} + d'^{-2}}}$$
(33)

6.6. **Probability measures.** (derived by integral calculus)

bernoulli
$$p \gg n = n$$
 (34)

geometric
$$p \gg n = n$$
 (35)

$$poisson r \gg n = n \tag{36}$$

uniform
$$x y \gg n = n$$
 (37)

beta
$$a b \gg n = n$$
 (38)

exponential
$$l \gg n = n$$
 (39)

$$normal c d \gg n = n \tag{40}$$

6.7. **Change of variables.** (derived by integral calculus)

fmap
$$(\lambda x. - \log x)$$
 (uniform 0 1) = exponential 1 (41)

fmap
$$(\lambda x. c + d \cdot x)$$
 (lebesgue $a b$)

$$= (1/d) \odot \text{ lebesgue } (c + d \cdot a) (c + d \cdot b)$$
 (42)

References

- Culpepper, Ryan, and Andrew Cobb. 2017. Contextual equivalence for probabilistic programs with continuous random variables and scoring. In *Programming languages and systems: Proceedings of ESOP 2017, 26th European symposium on programming*, ed. Yang Hongseok, 368–392. Lecture Notes in Computer Science 10201, Berlin: Springer.
- Davidson-Pilon, Cameron. 2016. *Bayesian methods for hackers: Probabilistic programming and Bayesian inference*. Boston: Addison-Wesley.
- Eddy, Sean R. 2004. What is Bayesian statistics? *Nature Biotechnology* 22(9):1177–1178.
- Heunen, Chris, Ohad Kammar, Sam Staton, and Hongseok Yang. 2017. A convenient category for higher-order probability theory. In *LICS 2017: Proceedings of the 32nd symposium on logic in computer science*, 1–12. Washington, DC: IEEE Computer Society Press.
- MacKay, David J. C. 1998. Introduction to Monte Carlo methods. In *Learning and inference in graphical models*, ed. Michael I. Jordan. Dordrecht: Kluwer. Paperback: *Learning in Graphical Models*, MIT Press.
- McElreath, Richard. 2017. Markov chains: Why walk when you can flow? http://elevanth.org/blog/2017/11/28/build-a-better-markov-chain/.
- Ścibior, Adam, Ohad Kammar, Matthijs Vákár, Sam Staton, Hongseok Yang, Yufei Cai, Klaus Ostermann, Sean K. Moss, Chris Heunen, and Zoubin Ghahramani. 2018. Denotational validation of higher-order Bayesian inference. In *POPL '18: Conference record of the annual ACM symposium on principles of programming languages*. New York: ACM Press.
- Shan, Chung-chieh, and Norman Ramsey. 2017. Exact Bayesian inference by symbolic disintegration. In *POPL '17: Conference record of the annual ACM symposium on principles of*

- programming languages, 130–144. New York: ACM Press.
- Staton, Sam. 2017. Commutative semantics for probabilistic programming. In *Programming languages and systems: Proceedings of ESOP 2017, 26th European symposium on programming*, ed. Yang Hongseok, 855–879. Lecture Notes in Computer Science 10201, Berlin: Springer.
- Tierney, Luke. 1998. A note on Metropolis-Hastings kernels for general state spaces. *The Annals of Applied Probability* 8(1): 1–9.