
Monolingual probabilistic programming
using generalized coroutines

Oleg Kiselyov
FNMOC

oleg@pobox.com

Chung-chieh Shan
Rutgers University

ccshan@cs.rutgers.edu

19 June 2009

2/14

This session . . .

is about knowledge representation

Modular

programming

– Factored representation

Expressive

formalism

– Informative prior

Efficient implementation – Custom inference

2/14

This talk . . .

is about knowledge representation

Modular programming

– Factored representation

Expressive formalism

– Informative prior

Efficient implementation

– Custom inference

2/14

This talk . . . is about knowledge representation

Modular programming – Factored representation

Expressive formalism – Informative prior

Efficient implementation – Custom inference

2/14

This talk . . . is about knowledge representation

Modular programming – Factored representation

Expressive formalism – Informative prior

Efficient implementation – Custom inference

3/14

Declarative probabilistic inference
Model (what) Inference (how)

Toolkit
(BNT, PFP)

Language
(BLOG, IBAL,
Church)

Today:
Best of both

Express models and inference as interacting programs
in the same general-purpose language.

3/14

Declarative probabilistic inference
Model (what) Inference (how)

Toolkit
(BNT, PFP)

invoke distributions,
conditionalization, . . .

Language
(BLOG, IBAL,
Church)

random choice,
observation, . . .

interpret

Today:
Best of both

Express models and inference as interacting programs
in the same general-purpose language.

3/14

Declarative probabilistic inference
Model (what) Inference (how)

Toolkit
(BNT, PFP)

+ use existing libraries,
types, debugger

+ easy to add custom
inference

Language
(BLOG, IBAL,
Church)

+ random variables are
ordinary variables

+ compile models for
faster inference

Today:
Best of both

Express models and inference as interacting programs
in the same general-purpose language.

3/14

Declarative probabilistic inference
Model (what) Inference (how)

Toolkit
(BNT, PFP)

+ use existing libraries,
types, debugger

+ easy to add custom
inference

Language
(BLOG, IBAL,
Church)

+ random variables are
ordinary variables

+ compile models for
faster inference

Today:
Best of both

invoke interpret

Express models and inference as interacting programs
in the same general-purpose language.

3/14

Declarative probabilistic inference
Model (what) Inference (how)

Toolkit
(BNT, PFP)

+ use existing libraries,
types, debugger

+ easy to add custom
inference

Language
(BLOG, IBAL,
Church)

+ random variables are
ordinary variables

+ compile models for
faster inference

Today:
Best of both

Payoff: expressive model
+ models of inference:

bounded-rational
theory of mind

Payoff: fast inference
+ deterministic parts of

models run at full speed
+ importance sampling

Express models and inference as interacting programs
in the same general-purpose language.

4/14

Outline

I Expressivity
Memoization
Nested inference

Implementation
Reifying a model into a search tree
Importance sampling with look-ahead

Performance

5/14

Grass model cloudy

rain sprinkler

wet roof wet grass

let flip = fun p ->

dist [(p, true); (1.-.p, false)]

let grass_model = fun () ->

let cloudy = flip 0.5 in

let rain = flip (if cloudy then 0.8 else 0.2) in

let sprinkler = flip (if cloudy then 0.1 else 0.5) in

let wet_roof = flip 0.7 && rain in

let wet_grass = flip 0.9 && rain ||

flip 0.9 && sprinkler in

if wet_grass then rain else fail ()

normalize (exact_reify grass_model)

Models are ordinary code (in OCaml) using a library function dist.

Random variables are ordinary variables.
Inference applies to thunks and returns a distribution.
Deterministic parts of models run at full speed.

5/14

Grass model cloudy

rain sprinkler

wet roof wet grass

let flip = fun p ->

dist [(p, true); (1.-.p, false)]

let grass_model = fun () ->

let cloudy = flip 0.5 in

let rain = flip (if cloudy then 0.8 else 0.2) in

let sprinkler = flip (if cloudy then 0.1 else 0.5) in

let wet_roof = flip 0.7 && rain in

let wet_grass = flip 0.9 && rain ||

flip 0.9 && sprinkler in

if wet_grass then rain else fail ()

normalize (exact_reify grass_model)

Models are ordinary code (in OCaml) using a library function dist.

Random variables are ordinary variables.
Inference applies to thunks and returns a distribution.
Deterministic parts of models run at full speed.

5/14

Grass model cloudy

rain sprinkler

wet roof wet grass

let flip = fun p ->

dist [(p, true); (1.-.p, false)]

let grass_model = fun () ->

let cloudy = flip 0.5 in

let rain = flip (if cloudy then 0.8 else 0.2) in

let sprinkler = flip (if cloudy then 0.1 else 0.5) in

let wet_roof = flip 0.7 && rain in

let wet_grass = flip 0.9 && rain ||

flip 0.9 && sprinkler in

if wet_grass then rain else fail ()

normalize (exact_reify grass_model)

Models are ordinary code (in OCaml) using a library function dist.
Random variables are ordinary variables.

Inference applies to thunks and returns a distribution.
Deterministic parts of models run at full speed.

5/14

Grass model cloudy

rain sprinkler

wet roof wet grass

let flip = fun p ->

dist [(p, true); (1.-.p, false)]

let grass_model = fun () ->

let cloudy = flip 0.5 in

let rain = flip (if cloudy then 0.8 else 0.2) in

let sprinkler = flip (if cloudy then 0.1 else 0.5) in

let wet_roof = flip 0.7 && rain in

let wet_grass = flip 0.9 && rain ||

flip 0.9 && sprinkler in

if wet_grass then rain else fail ()

normalize (exact_reify grass_model)

Models are ordinary code (in OCaml) using a library function dist.
Random variables are ordinary variables.

Inference applies to thunks and returns a distribution.
Deterministic parts of models run at full speed.

5/14

Grass model cloudy

rain sprinkler

wet roof wet grass

let flip = fun p ->

dist [(p, true); (1.-.p, false)]

let grass_model = fun () ->

let cloudy = flip 0.5 in

let rain = flip (if cloudy then 0.8 else 0.2) in

let sprinkler = flip (if cloudy then 0.1 else 0.5) in

let wet_roof = flip 0.7 && rain in

let wet_grass = flip 0.9 && rain ||

flip 0.9 && sprinkler in

if wet_grass then rain else fail ()

normalize (exact_reify grass_model)

Models are ordinary code (in OCaml) using a library function dist.
Random variables are ordinary variables.
Inference applies to thunks and returns a distribution.

Deterministic parts of models run at full speed.

5/14

Grass model cloudy

rain sprinkler

wet roof wet grass

let flip = fun p ->

dist [(p, true); (1.-.p, false)]

let grass_model = fun () ->

let cloudy = flip 0.5 in

let rain = flip (if cloudy then 0.8 else 0.2) in

let sprinkler = flip (if cloudy then 0.1 else 0.5) in

let wet_roof = flip 0.7 && rain in

let wet_grass = flip 0.9 && rain ||

flip 0.9 && sprinkler in

if wet_grass then rain else fail ()

normalize (exact_reify grass_model)

Models are ordinary code (in OCaml) using a library function dist.
Random variables are ordinary variables.
Inference applies to thunks and returns a distribution.
Deterministic parts of models run at full speed.

6/14

Models as programs in a general-purpose language

Reuse existing infrastructure!

I Rich libraries: lists, arrays, database access, I/O, . . .
I Type inference
I Functions as first-class values
I Compiler
I Debugger
I Memoization

Express Dirichlet processes, etc. (Goodman et al. 2008)

Speed up inference using lazy evaluation
bucket elimination
sampling w/memoization (Pfeffer 2007)

6/14

Models as programs in a general-purpose language

Reuse existing infrastructure!

I Rich libraries: lists, arrays, database access, I/O, . . .
I Type inference
I Functions as first-class values
I Compiler
I Debugger
I Memoization

Express Dirichlet processes, etc. (Goodman et al. 2008)

Speed up inference using lazy evaluation

bucket elimination
sampling w/memoization (Pfeffer 2007)

6/14

Models as programs in a general-purpose language

Reuse existing infrastructure!

I Rich libraries: lists, arrays, database access, I/O, . . .
I Type inference
I Functions as first-class values
I Compiler
I Debugger
I Memoization

Express Dirichlet processes, etc. (Goodman et al. 2008)

Speed up inference using lazy evaluation
bucket elimination
sampling w/memoization (Pfeffer 2007)

7/14

Nested inference

exact_reify (fun () ->

Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in

let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.

Estimate p by flipping the coin twice.

What is the probability that p is at least 0:3?
Answer: 1.

at_least 0.3 true (exact_reify coin)

)

Returns a distribution—not just nested query (Goodman et al. 2008).
Inference procedures are OCaml code using dist, like models.
Works with observation, recursion, memoization.
Bounded-rational theory of mind without interpretive overhead.

7/14

Nested inference

exact_reify (fun () ->

Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in

let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.

Estimate p by flipping the coin twice.

What is the probability that p is at least 0:3?

Answer: 1.

at_least 0.3 true (exact_reify coin)

)

Returns a distribution—not just nested query (Goodman et al. 2008).
Inference procedures are OCaml code using dist, like models.
Works with observation, recursion, memoization.
Bounded-rational theory of mind without interpretive overhead.

7/14

Nested inference

exact_reify (fun () ->

Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in

let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.

Estimate p by flipping the coin twice.

What is the probability that p is at least 0:3?
Answer: 1.

at_least 0.3 true (exact_reify coin)

)

Returns a distribution—not just nested query (Goodman et al. 2008).
Inference procedures are OCaml code using dist, like models.
Works with observation, recursion, memoization.
Bounded-rational theory of mind without interpretive overhead.

7/14

Nested inference

exact_reify (fun () ->

Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in

let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.

Estimate p by flipping the coin twice.

What is the probability that p is at least 0:3?
Answer: 1.

at_least 0.3 true (exact_reify coin))

Returns a distribution—not just nested query (Goodman et al. 2008).
Inference procedures are OCaml code using dist, like models.
Works with observation, recursion, memoization.
Bounded-rational theory of mind without interpretive overhead.

7/14

Nested inference

exact_reify (fun () ->

Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in

let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.
Estimate p by flipping the coin twice.
What is the probability that our estimate of p is at least 0:3?
Answer: 7/8.

at_least 0.3 true (sample 2 coin))

Returns a distribution—not just nested query (Goodman et al. 2008).
Inference procedures are OCaml code using dist, like models.
Works with observation, recursion, memoization.
Bounded-rational theory of mind without interpretive overhead.

7/14

Nested inference

exact_reify (fun () ->

Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in

let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.
Estimate p by flipping the coin twice.
What is the probability that our estimate of p is at least 0:3?
Answer: 7/8.

at_least 0.3 true (sample 2 coin))

Returns a distribution—not just nested query (Goodman et al. 2008).
Inference procedures are OCaml code using dist, like models.
Works with observation, recursion, memoization.
Bounded-rational theory of mind without interpretive overhead.

8/14

Outline

Expressivity
Memoization
Nested inference

I Implementation
Reifying a model into a search tree
Importance sampling with look-ahead

Performance

9/14

Reifying a model into a search tree

closed

closed

true

.8

closed

.2

.3

false

.2

closed

...

.6

...

.3

.5

unit -> bool

reify

reflect

Exact inference by depth-first brute-force enumeration.
Rejection sampling by top-down random traversal.

9/14

Reifying a model into a search tree

open

open

true

.8

open

.2

.3

false

.2

open

open

.6

open

.3

.5

unit -> bool

reify

reflect

Exact inference by depth-first brute-force enumeration.
Rejection sampling by top-down random traversal.

9/14

Reifying a model into a search tree

closed

open

true

.8

open

.2

.3

false

.2

open

open

.6

open

.3

.5

unit -> bool

reify

reflect

Exact inference by depth-first brute-force enumeration.
Rejection sampling by top-down random traversal.

9/14

Reifying a model into a search tree

closed

closed

true

.8

open

.2

.3

false

.2

closed

open

.6

open

.3

.5

unit -> bool

reify

reflect

Exact inference by depth-first brute-force enumeration.
Rejection sampling by top-down random traversal.

9/14

Reifying a model into a search tree

closed

closed

true

.8

closed

.2

.3

false

.2

closed

open

.6

open

.3

.5

unit -> bool

reify

reflect

Exact inference by depth-first brute-force enumeration.
Rejection sampling by top-down random traversal.

9/14

Reifying a model into a search tree

open

closed

true

.8

closed

.2

.3

false

.2

closed

open

.6

open

.3

.5

unit -> bool

reify

reflect

Inference procedures cannot access models’ source code.

Reify then reflect:
I Brute-force enumeration becomes bucket elimination
I Sampling becomes particle filtering

9/14

Reifying a model into a search tree

open

closed

true

.8

closed

.2

.3

false

.2

closed

open

.6

open

.3

.5

unit -> bool

reify

reflect

Implementation: represent a probability and state monad
(Giry 1982, Moggi 1990, Filinski 1994)

using first-class delimited continuations
(Strachey & Wadsworth 1974,

Felleisen et al. 1987,
Danvy & Filinski 1989)

Implementation: using clonable user-level threads
I Model runs inside a thread.
I dist clones the thread.
I fail kills the thread.
I Memoization mutates thread-local storage.

10/14

Importance sampling with look-ahead

open

open

true

.8

open

.2

.3

false

.2

open

open

.6

open

.3

.5

Probability mass pc = 1

(:2; false) (:6; true)

1. Expand one level.

2. Report shallow successes.

3. Expand one more level and tally open probability.

4. Randomly choose a branch and go back to 2.

10/14

Importance sampling with look-ahead

closed

open

true

.8

open

.2

.3

false

.2

open

open

.6

open

.3

.5

Probability mass pc = 1

(:2; false) (:6; true)

1. Expand one level.

2. Report shallow successes.

3. Expand one more level and tally open probability.

4. Randomly choose a branch and go back to 2.

10/14

Importance sampling with look-ahead

closed

open

true

.8

open

.2

.3

false

.2

open

open

.6

open

.3

.5

Probability mass pc = 1

(:2; false)

(:6; true)

1. Expand one level.

2. Report shallow successes.

3. Expand one more level and tally open probability.

4. Randomly choose a branch and go back to 2.

10/14

Importance sampling with look-ahead

closed

:3 closed

true

.8

open

.2

.3

false

.2

:45 closed

open

.6

open

.3

.5

Probability mass pc = :75

(:2; false)

(:6; true)

1. Expand one level.

2. Report shallow successes.

3. Expand one more level and tally open probability.

4. Randomly choose a branch and go back to 2.

10/14

Importance sampling with look-ahead

closed

closed

true

.8

open

.2

.3

false

.2

closed

open

.6

open

.3

.5

Probability mass pc = :75

(:2; false)

(:6; true)

1. Expand one level.

2. Report shallow successes.

3. Expand one more level and tally open probability.

4. Randomly choose a branch and go back to 2.

10/14

Importance sampling with look-ahead

closed

closed

true

.8

open

.2

.3

false

.2

closed

open

.6

open

.3

.5

Probability mass pc = :75

(:2; false) (:6; true)

1. Expand one level.

2. Report shallow successes.

3. Expand one more level and tally open probability.

4. Randomly choose a branch and go back to 2.

10/14

Importance sampling with look-ahead

closed

closed

true

.8

0 closed

.2

.3

false

.2

closed

open

.6

open

.3

.5

Probability mass pc = 0

(:2; false) (:6; true)

1. Expand one level.

2. Report shallow successes.

3. Expand one more level and tally open probability.

4. Randomly choose a branch and go back to 2.

10/14

Importance sampling with look-ahead

closed

closed

true

.8

closed

.2

.3

false

.2

closed

open

.6

open

.3

.5

Probability mass pc = 0

(:2; false) (:6; true)

1. Expand one level.

2. Report shallow successes.

3. Expand one more level and tally open probability.

4. Randomly choose a branch and go back to 2.

11/14

Outline

Expressivity
Memoization
Nested inference

Implementation
Reifying a model into a search tree
Importance sampling with look-ahead

I Performance

12/14

Motivic development in Beethoven sonatas (Pfeffer 2007)

��� � ��Source motif � � � � � �

12/14

Motivic development in Beethoven sonatas (Pfeffer 2007)

ô���Source motif � ���� ���

12/14

Motivic development in Beethoven sonatas (Pfeffer 2007)

ô

ô

�

�

�

�Source motif

�

�

�

����

�

�

�

�

�

��

12/14

Motivic development in Beethoven sonatas (Pfeffer 2007)

�

�Source motif �� �

�

�

�

�

� �

� ��

�

�

�

��

12/14

Motivic development in Beethoven sonatas (Pfeffer 2007)

infer

�

�

�

Destination motif

Source motif

�

����

�

�

�

�

�

�

�

�

�

��

Implemented using lazy stochastic lists.

Motif pair 1 2 3 4 5 6 7

% correct using importance sampling
� Pfeffer 2007 (30 sec) 93 100 28 80 98 100 63
� This paper (90 sec) 98 100 29 87 94 100 77
� This paper (30 sec) 92 99 25 46 72 95 61

12/14

Motivic development in Beethoven sonatas (Pfeffer 2007)

infer

�

�

�

Destination motif

Source motif

�

����

�

�

�

�

�

�

�

�

�

��

Implemented using lazy stochastic lists.

Motif pair 1 2 3 4 5 6 7

% correct using importance sampling
� Pfeffer 2007 (30 sec) 93 100 28 80 98 100 63
� This paper (90 sec) 98 100 29 87 94 100 77
� This paper (30 sec) 92 99 25 46 72 95 61

12/14

Motivic development in Beethoven sonatas (Pfeffer 2007)

0

5

10

15

20

25

30

35

40

-19 -18 -17 -16 -15 -14 -13

F
re

qu
en

cy
 in

 1
00

 tr
ia

ls

ln Pr(D = 1 | S = 1)

IBAL
90 seconds
30 seconds

13/14

Noisy radar blips for aircraft tracking (Milch et al. 2007)

Blips present and absent

infer

0 1 2 3 4 5 6 7

1 2 3 4 5 61 2 3 43 4

Number of planes
P

ro
ba

bi
lit

y

Particle filter. Implemented using lazy stochastic coordinates.

13/14

Noisy radar blips for aircraft tracking (Milch et al. 2007)

Blips present and absent
t = 1

infer

0 1 2 3 4 5 6 7

1 2 3 4 5 6

1 2 3 43 4

Number of planes
P

ro
ba

bi
lit

y

Particle filter. Implemented using lazy stochastic coordinates.

13/14

Noisy radar blips for aircraft tracking (Milch et al. 2007)

Blips present and absent
t = 1, t = 2

infer

0 1 2 3 4 5 6 71 2 3 4 5 6

1 2 3 4

3 4

Number of planes
P

ro
ba

bi
lit

y

Particle filter. Implemented using lazy stochastic coordinates.

13/14

Noisy radar blips for aircraft tracking (Milch et al. 2007)

Blips present and absent
t = 1, t = 2, t = 3

infer

0 1 2 3 4 5 6 71 2 3 4 5 61 2 3 4

3 4

Number of planes
P

ro
ba

bi
lit

y

Particle filter. Implemented using lazy stochastic coordinates.

14/14

Summary
Model (what) Inference (how)

Toolkit

(BNT, PFP)

+ use existing libraries,
types, debugger

+ easy to add custom
inference

Language

(BLOG, IBAL,
Church)

+ random variables are
ordinary variables

+ compile models for
faster inference

Today:
Best of both

Payoff: expressive model
+ models of inference:

bounded-rational
theory of mind

Payoff: fast inference
+ deterministic parts of

models run at full speed
+ importance sampling

Express models and inference as interacting programs
in the same general-purpose language.

	Expressivity
	Memoization
	Nested inference

	Implementation
	Reifying a model into a search tree
	Importance sampling with look-ahead

	Performance

