
Monolingual probabilistic programming
using generalized coroutines

Oleg Kiselyov
FNMOC

oleg@pobox.com

Chung-chieh Shan
Rutgers University

ccshan@cs.rutgers.edu

19 June 2009



2/14

This session . . .

is about knowledge representation

Modular

programming

– Factored representation

Expressive

formalism

– Informative prior

Efficient implementation – Custom inference



2/14

This talk . . .

is about knowledge representation

Modular programming

– Factored representation

Expressive formalism

– Informative prior

Efficient implementation

– Custom inference



2/14

This talk . . . is about knowledge representation

Modular programming – Factored representation

Expressive formalism – Informative prior

Efficient implementation – Custom inference



2/14

This talk . . . is about knowledge representation

Modular programming – Factored representation

Expressive formalism – Informative prior

Efficient implementation – Custom inference



3/14

Declarative probabilistic inference
Model (what) Inference (how)

Toolkit
(BNT, PFP)

Language
(BLOG, IBAL,
Church)

Today:
Best of both

Express models and inference as interacting programs
in the same general-purpose language.
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Declarative probabilistic inference
Model (what) Inference (how)

Toolkit
(BNT, PFP)

+ use existing libraries,
types, debugger

+ easy to add custom
inference

Language
(BLOG, IBAL,
Church)

+ random variables are
ordinary variables

+ compile models for
faster inference

Today:
Best of both

Payoff: expressive model
+ models of inference:

bounded-rational
theory of mind

Payoff: fast inference
+ deterministic parts of

models run at full speed
+ importance sampling

Express models and inference as interacting programs
in the same general-purpose language.
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Outline

I Expressivity
Memoization
Nested inference

Implementation
Reifying a model into a search tree
Importance sampling with look-ahead

Performance
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Grass model cloudy

rain sprinkler

wet roof wet grass

let flip = fun p ->

dist [(p, true); (1.-.p, false)]

let grass_model = fun () ->

let cloudy = flip 0.5 in

let rain = flip (if cloudy then 0.8 else 0.2) in

let sprinkler = flip (if cloudy then 0.1 else 0.5) in

let wet_roof = flip 0.7 && rain in

let wet_grass = flip 0.9 && rain ||

flip 0.9 && sprinkler in

if wet_grass then rain else fail ()

normalize (exact_reify grass_model)

Models are ordinary code (in OCaml) using a library function dist.

Random variables are ordinary variables.
Inference applies to thunks and returns a distribution.
Deterministic parts of models run at full speed.
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Models as programs in a general-purpose language

Reuse existing infrastructure!

I Rich libraries: lists, arrays, database access, I/O, . . .
I Type inference
I Functions as first-class values
I Compiler
I Debugger
I Memoization

Express Dirichlet processes, etc. (Goodman et al. 2008)

Speed up inference using lazy evaluation
bucket elimination
sampling w/memoization (Pfeffer 2007)
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Nested inference

exact_reify (fun () ->

Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in

let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.

Estimate p by flipping the coin twice.

What is the probability that p is at least 0:3?
Answer: 1.

at_least 0.3 true (exact_reify coin)

)

Returns a distribution—not just nested query (Goodman et al. 2008).
Inference procedures are OCaml code using dist, like models.
Works with observation, recursion, memoization.
Bounded-rational theory of mind without interpretive overhead.
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Reifying a model into a search tree
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Exact inference by depth-first brute-force enumeration.
Rejection sampling by top-down random traversal.
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Reifying a model into a search tree

open
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true

.8

closed

.2

.3

false

.2

closed

open

.6

open

.3

.5

unit -> bool

reify

reflect

Inference procedures cannot access models’ source code.

Reify then reflect:
I Brute-force enumeration becomes bucket elimination
I Sampling becomes particle filtering
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Reifying a model into a search tree

open

closed

true

.8

closed

.2

.3

false

.2

closed

open

.6

open

.3

.5

unit -> bool

reify

reflect

Implementation: represent a probability and state monad
(Giry 1982, Moggi 1990, Filinski 1994)

using first-class delimited continuations
(Strachey & Wadsworth 1974,

Felleisen et al. 1987,
Danvy & Filinski 1989)

Implementation: using clonable user-level threads
I Model runs inside a thread.
I dist clones the thread.
I fail kills the thread.
I Memoization mutates thread-local storage.
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Importance sampling with look-ahead
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1. Expand one level.

2. Report shallow successes.

3. Expand one more level and tally open probability.

4. Randomly choose a branch and go back to 2.
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Motivic development in Beethoven sonatas (Pfeffer 2007)
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Implemented using lazy stochastic lists.

Motif pair 1 2 3 4 5 6 7

% correct using importance sampling
� Pfeffer 2007 (30 sec) 93 100 28 80 98 100 63
� This paper (90 sec) 98 100 29 87 94 100 77
� This paper (30 sec) 92 99 25 46 72 95 61
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Motivic development in Beethoven sonatas (Pfeffer 2007)
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Noisy radar blips for aircraft tracking (Milch et al. 2007)

Blips present and absent
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Particle filter. Implemented using lazy stochastic coordinates.
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Noisy radar blips for aircraft tracking (Milch et al. 2007)
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Summary
Model (what) Inference (how)

Toolkit

(BNT, PFP)

+ use existing libraries,
types, debugger

+ easy to add custom
inference

Language

(BLOG, IBAL,
Church)

+ random variables are
ordinary variables

+ compile models for
faster inference

Today:
Best of both

Payoff: expressive model
+ models of inference:

bounded-rational
theory of mind

Payoff: fast inference
+ deterministic parts of

models run at full speed
+ importance sampling

Express models and inference as interacting programs
in the same general-purpose language.
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