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Probabilistic inference

Model (what) Inference (how)

Toolkit
(BNT, PFP)

Pr(Reality)

Pr(Obs j Reality)
obs

9=
; Pr(Reality j Obs = obs)

Pr(Obs = obs j Reality) Pr(Reality)

Pr(Obs = obs)

Language
(BLOG, IBAL,
Church)

Today:
Best of both

Express models and inference as interacting programs
in the same general-purpose language.
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Declarative probabilistic inference

Model (what) Inference (how)

Toolkit
(BNT, PFP)

invoke distributions,
conditionalization, . . .

Language
(BLOG, IBAL,
Church)

random choice,
observation, . . .

interpret

Today:
Best of both

Express models and inference as interacting programs
in the same general-purpose language.
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Model (what) Inference (how)

Toolkit
(BNT, PFP)

+ use existing libraries,
types, debugger

+ easy to add custom
inference

Language
(BLOG, IBAL,
Church)

+ random variables are
ordinary variables

+ compile models for
faster inference

Today:
Best of both

Express models and inference as interacting programs
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+ random variables are
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Today:
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Declarative probabilistic inference

Model (what) Inference (how)

Toolkit
(BNT, PFP)

+ use existing libraries,
types, debugger

+ easy to add custom
inference

Language
(BLOG, IBAL,
Church)

+ random variables are
ordinary variables

+ compile models for
faster inference

Today:
Best of both

Payoff: expressive model
+ models of inference:

bounded-rational
theory of mind

Payoff: fast inference
+ deterministic parts of

models run at full speed
+ importance sampling

Express models and inference as interacting programs
in the same general-purpose language.
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Outline

I Expressivity
Nested inference

Implementation
Reifying a model into a search tree
Importance sampling with look-ahead

Performance
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Hidden Markov model

type state = int type obs = L | R let nstates = 8
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Hidden Markov model
type state = int type obs = L | R let nstates = 8

let transition_prob = [| [(0.7,0); (0.3,1)]; ... |]
let evolve : state -> state = fun st ->

dist (transition_prob.(st))
let observe : state -> obs = fun st ->
let p = float st /. float (nstates - 1) in
dist [(1.-.p, L); (p, R)]

let rec run = fun n obs ->
let st = if n = 1 then uniform nstates else

evolve (run (n - 1) obs) in
obs st n; st

run 5
(fun st n -> if n = 4 && observe st <> L then fail ())

))

Models are ordinary code (in OCaml) using a library function dist.

Inference applies to a thunk and returns a distribution.
Deterministic parts of models run at full speed.
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Models as programs in a general-purpose language

Reuse existing infrastructure!

I Rich libraries: lists, arrays, database access, I/O, . . .
I Type inference
I Functions as first-class values
I Compiler
I Debugger
I Memoization

Express Dirichlet processes, etc. (Goodman et al. 2008)

Speed up inference using lazy evaluation
bucket elimination
sampling w/memoization (Pfeffer 2007)
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Self application: nested inference

exact_reify (fun () ->

Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in
let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.

Estimate p by flipping the coin twice.

What is the probability that p is at least 0:3?
Answer: 1.

at_least 0.3 true (exact_reify coin)

)

Returns a distribution—not just nested query (Goodman et al. 2008).
Inference procedures are OCaml code using dist, like models.
Works with observation, recursion, memoization.
Bounded-rational theory of mind without interpretive overhead.
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Outline

Expressivity
Nested inference

I Implementation
Reifying a model into a search tree
Importance sampling with look-ahead

Performance
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Reifying a model into a search tree
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unit -> bool

reify

reflect

Exact inference by depth-first brute-force enumeration.
Rejection sampling by top-down random traversal.
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Reifying a model into a search tree

open

closed

true

.8

closed

.2

.3

false

.2

closed

open

.6

open

.3

.5

unit -> bool

reify

reflect

Inference procedures cannot access models’ source code.

Reify then reflect (materialized views):
I Brute-force enumeration becomes bucket elimination
I Sampling becomes particle filtering
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Reifying a model into a search tree

open
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true

.8

closed
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false

.2

closed

open

.6

open

.3

.5

unit -> bool

reify

reflect

Implementation:
I represent a probability and state monad

(Giry 1982, Moggi 1990, Filinski 1994)
I using first-class delimited continuations

(Strachey & Wadsworth 1974,
Felleisen et al. 1987,

Danvy & Filinski 1989)
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Reifying a model into a search tree

open
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true

.8

closed

.2

.3

false

.2

closed

open

.6

open

.3

.5

unit -> bool

reify

reflect

Implementation: shallow DSL embedding
let dist ch = List.map ... ch
let literal x = unit x
let app e0 e1 = bind e0 (fun f -> bind e1 (fun x -> f x))

Continuation-passing style
let dist ch = fun k -> List.map ...k... ch
let literal x = fun k -> k x
let app e0 e1 = fun k -> e0 (fun f -> e1 (fun x -> f x k))

First-class delimited continuations
let dist ch = shift (fun k -> List.map ...k... ch)
let literal x = x
let app e0 e1 = e0 e1
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Reifying a model into a search tree

open

closed
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.8

closed

.2

.3

false

.2

closed

open

.6

open

.3

.5

unit -> bool

reify

reflect

Implementation: using clonable user-level threads
I Model runs inside a thread.
I dist clones the thread.
I fail kills the thread.
I Memoization mutates thread-local storage.

Analogy: Virtualize (not emulate) a CPU. Nesting works.
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Importance sampling with look-ahead
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Probability mass pc = 1
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1. Expand one level.

2. Report shallow successes.

3. Expand one more level and tally open probability.

4. Randomly choose a branch and go back to 2.
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Motivic development in Beethoven sonatas (Pfeffer 2007)
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Motivic development in Beethoven sonatas (Pfeffer 2007)
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Implemented using lazy stochastic lists.

Motif pair 1 2 3 4 5 6 7

% correct using importance sampling
� Pfeffer 2007 (30 sec) 93 100 28 80 98 100 63
� This paper (90 sec) 98 100 29 87 94 100 77
� This paper (30 sec) 92 99 25 46 72 95 61
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Motivic development in Beethoven sonatas (Pfeffer 2007)
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Noisy radar blips for aircraft tracking (Milch et al. 2007)
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Particle filter. Implemented using lazy stochastic coordinates.
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Noisy radar blips for aircraft tracking (Milch et al. 2007)
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Noisy radar blips for aircraft tracking (Milch et al. 2007)
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Particle filter. Implemented using lazy stochastic coordinates.
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Declarative probabilistic inference

Model (what) Inference (how)

Toolkit
(BNT, PFP)

+ use existing libraries,
types, debugger

+ easy to add custom
inference

Language
(BLOG, IBAL,
Church)

+ random variables are
ordinary variables

+ compile models for
faster inference

Today:
Best of both

Payoff: expressive model
+ models of inference:

bounded-rational
theory of mind

Payoff: fast inference
+ deterministic parts of

models run at full speed
+ importance sampling

Express models and inference as interacting programs
in the same general-purpose language.
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