
Embedded probabilistic programming

Oleg Kiselyov
FNMOC

oleg@pobox.com

Chung-chieh Shan
Rutgers University

ccshan@cs.rutgers.edu

17 July 2009



2/14

Probabilistic inference

Model (what) Inference (how)

Toolkit
(BNT, PFP)

Pr(Reality)

Pr(Obs j Reality)
obs

9=
; Pr(Reality j Obs = obs)

Pr(Obs = obs j Reality) Pr(Reality)

Pr(Obs = obs)

Language
(BLOG, IBAL,
Church)

Today:
Best of both

Express models and inference as interacting programs
in the same general-purpose language.



2/14

Declarative probabilistic inference

Model (what) Inference (how)

Toolkit
(BNT, PFP)

Pr(Reality)

Pr(Obs j Reality)
obs

9=
; Pr(Reality j Obs = obs)

Pr(Obs = obs j Reality) Pr(Reality)

Pr(Obs = obs)

Language
(BLOG, IBAL,
Church)

Today:
Best of both

Express models and inference as interacting programs
in the same general-purpose language.



2/14

Declarative probabilistic inference

Model (what) Inference (how)

Toolkit
(BNT, PFP)

invoke distributions,
conditionalization, . . .

Language
(BLOG, IBAL,
Church)

random choice,
observation, . . .

interpret

Today:
Best of both

Express models and inference as interacting programs
in the same general-purpose language.



2/14

Declarative probabilistic inference

Model (what) Inference (how)

Toolkit
(BNT, PFP)

+ use existing libraries,
types, debugger

+ easy to add custom
inference

Language
(BLOG, IBAL,
Church)

+ random variables are
ordinary variables

+ compile models for
faster inference

Today:
Best of both

Express models and inference as interacting programs
in the same general-purpose language.



2/14

Declarative probabilistic inference

Model (what) Inference (how)

Toolkit
(BNT, PFP)

+ use existing libraries,
types, debugger

+ easy to add custom
inference

Language
(BLOG, IBAL,
Church)

+ random variables are
ordinary variables

+ compile models for
faster inference

Today:
Best of both

invoke interpret

Express models and inference as interacting programs
in the same general-purpose language.



2/14

Declarative probabilistic inference

Model (what) Inference (how)

Toolkit
(BNT, PFP)

+ use existing libraries,
types, debugger

+ easy to add custom
inference

Language
(BLOG, IBAL,
Church)

+ random variables are
ordinary variables

+ compile models for
faster inference

Today:
Best of both

Payoff: expressive model
+ models of inference:

bounded-rational
theory of mind

Payoff: fast inference
+ deterministic parts of

models run at full speed
+ importance sampling

Express models and inference as interacting programs
in the same general-purpose language.



3/14

Outline

I Expressivity
Nested inference

Implementation
Reifying a model into a search tree
Importance sampling with look-ahead

Performance



4/14

Hidden Markov model

type state = int type obs = L | R let nstates = 8

0 1 2 3 4 5 6 7

0.7 0.70.4 0.4 0.4 0.4 0.4 0.4
0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

L R
6/7 1/7

L R
5/7 2/7

L R
4/7 3/7

L R
3/7 4/7

L R
2/7 5/7

L R
1/7 6/7

L R
1 1

1/8

L

Pr(State5 j Obs4 = L)



4/14

Hidden Markov model

type state = int type obs = L | R let nstates = 8

0 1 2 3 4 5 6 7

0.7 0.70.4 0.4 0.4 0.4 0.4 0.4
0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

L R
6/7 1/7

L R
5/7 2/7

L R
4/7 3/7

L R
3/7 4/7

L R
2/7 5/7

L R
1/7 6/7

L R
1 1

1/8

L

Pr(State5 j Obs4 = L)



4/14

Hidden Markov model

type state = int type obs = L | R let nstates = 8

0 1 2 3 4 5 6 7

0.7 0.70.4 0.4 0.4 0.4 0.4 0.4
0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

L R
6/7 1/7

L R
5/7 2/7

L R
4/7 3/7

L R
3/7 4/7

L R
2/7 5/7

L R
1/7 6/7

L R
1 1

1/8

L

Pr(State5 j Obs4 = L)



4/14

Hidden Markov model

type state = int type obs = L | R let nstates = 8

0 1 2 3 4 5 6 7

0.7 0.70.4 0.4 0.4 0.4 0.4 0.4
0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

L R
6/7 1/7

L R
5/7 2/7

L R
4/7 3/7

L R
3/7 4/7

L R
2/7 5/7

L R
1/7 6/7

L R
1 1

2

3

3

4

3

1/8

0.3

0.4

0.3

0.3

L
3/7

Pr(State5 j Obs4 = L)



4/14

Hidden Markov model
type state = int type obs = L | R let nstates = 8

0 1 2 3 4 5 6 7

0.7 0.70.4 0.4 0.4 0.4 0.4 0.4
0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

L R
6/7 1/7

L R
5/7 2/7

L R
4/7 3/7

L R
3/7 4/7

L R
2/7 5/7

L R
1/7 6/7

L R
1 1

1/8

L

Pr(State5 j Obs4 = L)



4/14

Hidden Markov model
type state = int type obs = L | R let nstates = 8

let transition_prob = [| [(0.7,0); (0.3,1)]; ... |]
let evolve : state -> state = fun st ->

dist (transition_prob.(st))
let observe : state -> obs = fun st ->
let p = float st /. float (nstates - 1) in
dist [(1.-.p, L); (p, R)]

let rec run = fun n obs ->
let st = if n = 1 then uniform nstates else

evolve (run (n - 1) obs) in
obs st n; st

run 5
(fun st n -> if n = 4 && observe st <> L then fail ())

))

Models are ordinary code (in OCaml) using a library function dist.

Inference applies to a thunk and returns a distribution.
Deterministic parts of models run at full speed.



4/14

Hidden Markov model
type state = int type obs = L | R let nstates = 8

let transition_prob = [| [(0.7,0); (0.3,1)]; ... |]
let evolve : state -> state = fun st ->

dist (transition_prob.(st))
let observe : state -> obs = fun st ->
let p = float st /. float (nstates - 1) in
dist [(1.-.p, L); (p, R)]

let rec run = fun n obs ->
let st = if n = 1 then uniform nstates else

evolve (run (n - 1) obs) in
obs st n; st

run 5
(fun st n -> if n = 4 && observe st <> L then fail ())

))

Models are ordinary code (in OCaml) using a library function dist.

Inference applies to a thunk and returns a distribution.
Deterministic parts of models run at full speed.



4/14

Hidden Markov model
type state = int type obs = L | R let nstates = 8

let transition_prob = [| [(0.7,0); (0.3,1)]; ... |]
let evolve : state -> state = fun st ->

dist (transition_prob.(st))
let observe : state -> obs = fun st ->
let p = float st /. float (nstates - 1) in
dist [(1.-.p, L); (p, R)]

let rec run = fun n obs ->
let st = if n = 1 then uniform nstates else

evolve (run (n - 1) obs) in
obs st n; st

run 5
(fun st n -> if n = 4 && observe st <> L then fail ())

))

Models are ordinary code (in OCaml) using a library function dist.

Inference applies to a thunk and returns a distribution.
Deterministic parts of models run at full speed.



4/14

Hidden Markov model
type state = int type obs = L | R let nstates = 8

let transition_prob = [| [(0.7,0); (0.3,1)]; ... |]
let evolve : state -> state = fun st ->

dist (transition_prob.(st))
let observe : state -> obs = fun st ->
let p = float st /. float (nstates - 1) in
dist [(1.-.p, L); (p, R)]

let rec run = fun n obs ->
let st = if n = 1 then uniform nstates else

evolve (run (n - 1) obs) in
obs st n; st

normalize (exact_reify (fun () -> run 5
(fun st n -> if n = 4 && observe st <> L then fail ())))

Models are ordinary code (in OCaml) using a library function dist.
Inference applies to a thunk and returns a distribution.

Deterministic parts of models run at full speed.



4/14

Hidden Markov model
type state = int type obs = L | R let nstates = 8

let transition_prob = [| [(0.7,0); (0.3,1)]; ... |]
let evolve : state -> state = fun st ->

dist (transition_prob.(st))
let observe : state -> obs = fun st ->
let p = float st /. float (nstates - 1) in
dist [(1.-.p, L); (p, R)]

let rec run = fun n obs ->
let st = if n = 1 then uniform nstates else

evolve (run (n - 1) obs) in
obs st n; st

normalize (exact_reify (fun () -> run 5
(fun st n -> if n = 4 && observe st <> L then fail ())))

Models are ordinary code (in OCaml) using a library function dist.
Inference applies to a thunk and returns a distribution.
Deterministic parts of models run at full speed.



5/14

Models as programs in a general-purpose language

Reuse existing infrastructure!

I Rich libraries: lists, arrays, database access, I/O, . . .
I Type inference
I Functions as first-class values
I Compiler
I Debugger
I Memoization

Express Dirichlet processes, etc. (Goodman et al. 2008)

Speed up inference using lazy evaluation
bucket elimination
sampling w/memoization (Pfeffer 2007)



6/14

Hidden Markov model
type state = int type obs = L | R let nstates = 8

let transition_prob = [| [(0.7,0); (0.3,1)]; ... |]
let evolve : state -> state = fun st ->

dist (transition_prob.(st))
let observe : state -> obs = fun st ->
let p = float st /. float (nstates - 1) in
dist [(1.-.p, L); (p, R)]

let rec run = fun n obs ->
let st = if n = 1 then uniform nstates else

evolve (run (n - 1) obs) in
obs st n; st

normalize (exact_reify (fun () -> run 5
(fun st n -> if n = 4 && observe st <> L then fail ())))

Models are ordinary code (in OCaml) using a library function dist.
Inference applies to a thunk and returns a distribution.
Deterministic parts of models run at full speed.



6/14

Hidden Markov model
type state = int type obs = L | R let nstates = 8

let transition_prob = [| [(0.7,0); (0.3,1)]; ... |]
let evolve : state -> state = fun st ->

dist (transition_prob.(st))
let observe : state -> obs = fun st ->
let p = float st /. float (nstates - 1) in
dist [(1.-.p, L); (p, R)]

let rec run = fun n obs ->
let st = if n = 1 then uniform nstates else

evolve (run (n - 1) obs) in
obs st n; st

normalize (exact_reify (fun () -> run 5
(fun st n -> if n = 4 && observe st <> L then fail ())))

Models are ordinary code (in OCaml) using a library function dist.
Inference applies to a thunk and returns a distribution.
Deterministic parts of models run at full speed.



6/14

Hidden Markov model
type state = int type obs = L | R let nstates = 8

let transition_prob = [| [(0.7,0); (0.3,1)]; ... |]
let evolve : state -> state = fun st ->

dist (transition_prob.(st))
let observe : state -> obs = fun st ->
let p = float st /. float (nstates - 1) in
dist [(1.-.p, L); (p, R)]

let rec run = fun n obs ->
let st = if n = 1 then uniform nstates else

evolve (dist (exact_reify (fun () ->
run (n - 1) obs))) in

obs st n; st
normalize (exact_reify (fun () -> run 5
(fun st n -> if n = 4 && observe st <> L then fail ())))

Models are ordinary code (in OCaml) using a library function dist.
Inference applies to a thunk and returns a distribution.
Deterministic parts of models run at full speed.



7/14

Self application: nested inference

exact_reify (fun () ->

Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in
let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.

Estimate p by flipping the coin twice.

What is the probability that p is at least 0:3?
Answer: 1.

at_least 0.3 true (exact_reify coin)

)

Returns a distribution—not just nested query (Goodman et al. 2008).
Inference procedures are OCaml code using dist, like models.
Works with observation, recursion, memoization.
Bounded-rational theory of mind without interpretive overhead.



7/14

Self application: nested inference

exact_reify (fun () ->

Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in
let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.

Estimate p by flipping the coin twice.

What is the probability that p is at least 0:3?

Answer: 1.

at_least 0.3 true (exact_reify coin)

)

Returns a distribution—not just nested query (Goodman et al. 2008).
Inference procedures are OCaml code using dist, like models.
Works with observation, recursion, memoization.
Bounded-rational theory of mind without interpretive overhead.



7/14

Self application: nested inference

exact_reify (fun () ->

Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in
let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.

Estimate p by flipping the coin twice.

What is the probability that p is at least 0:3?
Answer: 1.

at_least 0.3 true (exact_reify coin)

)

Returns a distribution—not just nested query (Goodman et al. 2008).
Inference procedures are OCaml code using dist, like models.
Works with observation, recursion, memoization.
Bounded-rational theory of mind without interpretive overhead.



7/14

Self application: nested inference

exact_reify (fun () ->

Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in
let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.

Estimate p by flipping the coin twice.

What is the probability that p is at least 0:3?
Answer: 1.

at_least 0.3 true (exact_reify coin) )

Returns a distribution—not just nested query (Goodman et al. 2008).
Inference procedures are OCaml code using dist, like models.
Works with observation, recursion, memoization.
Bounded-rational theory of mind without interpretive overhead.



7/14

Self application: nested inference

exact_reify (fun () ->

Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in
let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.
Estimate p by flipping the coin twice.
What is the probability that our estimate of p is at least 0:3?
Answer: 7/8.

at_least 0.3 true (sample 2 coin) )

Returns a distribution—not just nested query (Goodman et al. 2008).
Inference procedures are OCaml code using dist, like models.
Works with observation, recursion, memoization.
Bounded-rational theory of mind without interpretive overhead.



7/14

Self application: nested inference

exact_reify (fun () ->

Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in
let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.
Estimate p by flipping the coin twice.
What is the probability that our estimate of p is at least 0:3?
Answer: 7/8.

at_least 0.3 true (sample 2 coin) )

Returns a distribution—not just nested query (Goodman et al. 2008).
Inference procedures are OCaml code using dist, like models.
Works with observation, recursion, memoization.
Bounded-rational theory of mind without interpretive overhead.



8/14

Outline

Expressivity
Nested inference

I Implementation
Reifying a model into a search tree
Importance sampling with look-ahead

Performance



9/14

Reifying a model into a search tree

closed

closed

true

.8

closed

.2

.3

false

.2

closed

...

.6

...

.3

.5

unit -> bool

reify

reflect

Exact inference by depth-first brute-force enumeration.
Rejection sampling by top-down random traversal.



9/14

Reifying a model into a search tree

open

open

true

.8

open

.2

.3

false

.2

open

open

.6

open

.3

.5

unit -> bool

reify

reflect

Exact inference by depth-first brute-force enumeration.
Rejection sampling by top-down random traversal.



9/14

Reifying a model into a search tree

closed

open

true

.8

open

.2

.3

false

.2

open

open

.6

open

.3

.5

unit -> bool

reify

reflect

Exact inference by depth-first brute-force enumeration.
Rejection sampling by top-down random traversal.



9/14

Reifying a model into a search tree

closed

closed

true

.8

open

.2

.3

false

.2

closed

open

.6

open

.3

.5

unit -> bool

reify

reflect

Exact inference by depth-first brute-force enumeration.
Rejection sampling by top-down random traversal.



9/14

Reifying a model into a search tree

closed

closed

true

.8

closed

.2

.3

false

.2

closed

open

.6

open

.3

.5

unit -> bool

reify

reflect

Exact inference by depth-first brute-force enumeration.
Rejection sampling by top-down random traversal.



9/14

Reifying a model into a search tree

open

closed

true

.8

closed

.2

.3

false

.2

closed

open

.6

open

.3

.5

unit -> bool

reify

reflect

Inference procedures cannot access models’ source code.

Reify then reflect (materialized views):
I Brute-force enumeration becomes bucket elimination
I Sampling becomes particle filtering



9/14

Reifying a model into a search tree

open

closed

true

.8

closed

.2

.3

false

.2

closed

open

.6

open

.3

.5

unit -> bool

reify

reflect

Implementation:
I represent a probability and state monad

(Giry 1982, Moggi 1990, Filinski 1994)
I using first-class delimited continuations

(Strachey & Wadsworth 1974,
Felleisen et al. 1987,

Danvy & Filinski 1989)



9/14

Reifying a model into a search tree

open

closed

true

.8

closed

.2

.3

false

.2

closed

open

.6

open

.3

.5

unit -> bool

reify

reflect

Implementation: shallow DSL embedding
let dist ch = List.map ... ch
let literal x = unit x
let app e0 e1 = bind e0 (fun f -> bind e1 (fun x -> f x))

Continuation-passing style
let dist ch = fun k -> List.map ...k... ch
let literal x = fun k -> k x
let app e0 e1 = fun k -> e0 (fun f -> e1 (fun x -> f x k))

First-class delimited continuations
let dist ch = shift (fun k -> List.map ...k... ch)
let literal x = x
let app e0 e1 = e0 e1



9/14

Reifying a model into a search tree

open

closed

true

.8

closed

.2

.3

false

.2

closed

open

.6

open

.3

.5

unit -> bool

reify

reflect

Implementation: using clonable user-level threads
I Model runs inside a thread.
I dist clones the thread.
I fail kills the thread.
I Memoization mutates thread-local storage.

Analogy: Virtualize (not emulate) a CPU. Nesting works.



10/14

Importance sampling with look-ahead

open

open

true

.8

open

.2

.3

false

.2

open

open

.6

open

.3

.5

Probability mass pc = 1

(:2; false) (:6; true)

1. Expand one level.

2. Report shallow successes.

3. Expand one more level and tally open probability.

4. Randomly choose a branch and go back to 2.



10/14

Importance sampling with look-ahead

closed

open

true

.8

open

.2

.3

false

.2

open

open

.6

open

.3

.5

Probability mass pc = 1

(:2; false) (:6; true)

1. Expand one level.

2. Report shallow successes.

3. Expand one more level and tally open probability.

4. Randomly choose a branch and go back to 2.



10/14

Importance sampling with look-ahead

closed

open

true

.8

open

.2

.3

false

.2

open

open

.6

open

.3

.5

Probability mass pc = 1

(:2; false)

(:6; true)

1. Expand one level.

2. Report shallow successes.

3. Expand one more level and tally open probability.

4. Randomly choose a branch and go back to 2.



10/14

Importance sampling with look-ahead

closed

:3 closed

true

.8

open

.2

.3

false

.2

:45 closed

open

.6

open

.3

.5

Probability mass pc = :75

(:2; false)

(:6; true)

1. Expand one level.

2. Report shallow successes.

3. Expand one more level and tally open probability.

4. Randomly choose a branch and go back to 2.



10/14

Importance sampling with look-ahead

closed

closed

true

.8

open

.2

.3

false

.2

closed

open

.6

open

.3

.5

Probability mass pc = :75

(:2; false)

(:6; true)

1. Expand one level.

2. Report shallow successes.

3. Expand one more level and tally open probability.

4. Randomly choose a branch and go back to 2.



10/14

Importance sampling with look-ahead

closed

closed

true

.8

open

.2

.3

false

.2

closed

open

.6

open

.3

.5

Probability mass pc = :75

(:2; false) (:6; true)

1. Expand one level.

2. Report shallow successes.

3. Expand one more level and tally open probability.

4. Randomly choose a branch and go back to 2.



10/14

Importance sampling with look-ahead

closed

closed

true

.8

0 closed

.2

.3

false

.2

closed

open

.6

open

.3

.5

Probability mass pc = 0

(:2; false) (:6; true)

1. Expand one level.

2. Report shallow successes.

3. Expand one more level and tally open probability.

4. Randomly choose a branch and go back to 2.



10/14

Importance sampling with look-ahead

closed

closed

true

.8

closed

.2

.3

false

.2

closed

open

.6

open

.3

.5

Probability mass pc = 0

(:2; false) (:6; true)

1. Expand one level.

2. Report shallow successes.

3. Expand one more level and tally open probability.

4. Randomly choose a branch and go back to 2.



11/14

Outline

Expressivity
Nested inference

Implementation
Reifying a model into a search tree
Importance sampling with look-ahead

I Performance



12/14

Motivic development in Beethoven sonatas (Pfeffer 2007)

��� � ��Source motif � � � � � �



12/14

Motivic development in Beethoven sonatas (Pfeffer 2007)

ô���Source motif � ���� ���



12/14

Motivic development in Beethoven sonatas (Pfeffer 2007)

ô

ô

�

�

�

�Source motif

�

�

�

����

�

�

�

�

�

��



12/14

Motivic development in Beethoven sonatas (Pfeffer 2007)

�

�Source motif �� �

�

�

�

�

� �

� ��

�

�

�

��



12/14

Motivic development in Beethoven sonatas (Pfeffer 2007)

infer

�

�

�

Destination motif

Source motif

�

����

�

�

�

�

�

�

�

�

�

��

Implemented using lazy stochastic lists.

Motif pair 1 2 3 4 5 6 7

% correct using importance sampling
� Pfeffer 2007 (30 sec) 93 100 28 80 98 100 63
� This paper (90 sec) 98 100 29 87 94 100 77
� This paper (30 sec) 92 99 25 46 72 95 61



12/14

Motivic development in Beethoven sonatas (Pfeffer 2007)

infer

�

�

�

Destination motif

Source motif

�

����

�

�

�

�

�

�

�

�

�

��

Implemented using lazy stochastic lists.

Motif pair 1 2 3 4 5 6 7

% correct using importance sampling
� Pfeffer 2007 (30 sec) 93 100 28 80 98 100 63
� This paper (90 sec) 98 100 29 87 94 100 77
� This paper (30 sec) 92 99 25 46 72 95 61



12/14

Motivic development in Beethoven sonatas (Pfeffer 2007)

0

5

10

15

20

25

30

35

40

-19 -18 -17 -16 -15 -14 -13

F
re

qu
en

cy
 in

 1
00

 tr
ia

ls

ln Pr(D = 1 | S = 1)

IBAL
90 seconds
30 seconds



13/14

Noisy radar blips for aircraft tracking (Milch et al. 2007)

Blips present and absent

infer

0 1 2 3 4 5 6 7

1 2 3 4 5 61 2 3 43 4

Number of planes
P

ro
ba

bi
lit

y

Particle filter. Implemented using lazy stochastic coordinates.



13/14

Noisy radar blips for aircraft tracking (Milch et al. 2007)

Blips present and absent
t = 1

infer

0 1 2 3 4 5 6 7

1 2 3 4 5 6

1 2 3 43 4

Number of planes
P

ro
ba

bi
lit

y

Particle filter. Implemented using lazy stochastic coordinates.



13/14

Noisy radar blips for aircraft tracking (Milch et al. 2007)

Blips present and absent
t = 1, t = 2

infer

0 1 2 3 4 5 6 71 2 3 4 5 6

1 2 3 4

3 4

Number of planes
P

ro
ba

bi
lit

y

Particle filter. Implemented using lazy stochastic coordinates.



13/14

Noisy radar blips for aircraft tracking (Milch et al. 2007)

Blips present and absent
t = 1, t = 2, t = 3

infer

0 1 2 3 4 5 6 71 2 3 4 5 61 2 3 4

3 4

Number of planes
P

ro
ba

bi
lit

y

Particle filter. Implemented using lazy stochastic coordinates.



14/14

Declarative probabilistic inference

Model (what) Inference (how)

Toolkit
(BNT, PFP)

+ use existing libraries,
types, debugger

+ easy to add custom
inference

Language
(BLOG, IBAL,
Church)

+ random variables are
ordinary variables

+ compile models for
faster inference

Today:
Best of both

Payoff: expressive model
+ models of inference:

bounded-rational
theory of mind

Payoff: fast inference
+ deterministic parts of

models run at full speed
+ importance sampling

Express models and inference as interacting programs
in the same general-purpose language.


	Expressivity
	Nested inference

	Implementation
	Reifying a model into a search tree
	Importance sampling with look-ahead

	Performance

